RADIOISOTOPES
in
MEDICINE:
Requirements - Production - Application
and future prospectives

2
Imaging with Radiotracers

Gerd-Jürgen BEYER
Prof. Dr. rer. nat. habil. (i.R.)
Geneva, Switzerland

THIRD INTERNATIONAL SUMMER STUDENT SCHOOL
NUCLEAR PHYSICS METHODS AND ACCELERATORS
IN BIOLOGY AND MEDICINE
Dubna, July 01-11, 2005
G.V. Hevesy: The Absorption and Translocation of Lead (ThB) by Plants \([\text{ThB} = ^{212}\text{Pb}] \)
Biochem. J. 17, 439 (1923)

Measurements of the tracer’s radioactivity provided thousand fold increases in sensitivity and accuracy over existing chemical assays. The foundation and basic rationale of much of Hevesy’s work visualized that a radioactive atom might be used as a “representative” tracer of stable atoms of the same element whenever and wherever it accompanied them in biological systems.

1943 Nobel Prize Chemistry

G.V. HEVESY the father of Nuclear Medicine
NUCLEAR MEDICINE = in vivo APPLICATION of RADIOTRACERS

1923 First tracer study with 210Pb/210Bi, G.Hevesy
1925 214Bi arm-to-arm circulation time, H.Blumgart
1935 32P renewal of mineral constituents of bone, O.Chieivitz & G.Hevesy
1937 dynamics of sodium transport in vivo, J.G.Hamilton
1937 128I, thyroid physiology, R.Hertzs, A.Roberts, R.Evans
1938 131I discovered by G.T.Seeborg, 1939 first diagnostic use J.G.Hamilton et al.
1947 131I –Fluorescine, 1950 131I –HSA, 1955 131I-rose bengale & hippurane, …
1957 99Mo-99mTc generator (1960 first sale), 133Xe for lung ventilation
1969 67Ga accumulation in cancer, C.L.Edwards
1970 Instant KIT’s for 99mTc
1973 201Tl, 123I, 111In, many other isotopes and tracer compounds
1978 first 18FDG PET scan

11 million individuals receive every year a radiotracer for diagnosis
ISOTOPES IN MEDICINE

DIAGNOSIS

- **in vitro**
 - 14C
 - 3H
 - 125I
 - others

- **in vivo**
 - 99Mo-99mTc
 - 201Tl
 - 123I
 - 111In
 - 67Ga
 - 81Rb-81mKr
 - others
 - 32P and others

THERAPY

- **internal**
 - 131I, 90Y
 - 153Sm, 186Re
 - 188W-188Re
 - 166Ho, 177Lu, others
 - 149Tb
 - 125I

- **external**
 - sealed sources
 - 192Ir, 182Ta, 137Cs
 - many others
 - needles for brachytherapy:
 - 103Pd, 125I
 - many others
 - stants
 - 32P and others
 - seeds
 - 90Sr or 90Y, others
 - applicators
 - 137Cs, others

sources

- sealed sources
 - 192Ir, 182Ta, 137Cs
 - many others
- needles for brachytherapy:
 - 103Pd, 125I
 - many others
- stants
 - 32P and others
- seeds
 - 90Sr or 90Y, others
- applicators
 - 137Cs, others

- **tele radio**
 - 60Co
 - gamma knife
 - 137Cs
 - blood cell irradiation

G.J.BEYER, HUG Geneva, 2002
ISOTOPES in MEDICINE

<table>
<thead>
<tr>
<th>Application</th>
<th>Requirement</th>
<th>Isotope</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIAGNOSIS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>in vitro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIAGNOSIS</td>
<td>T$_{1/2}$ = long biogenic behavior</td>
<td>3H, 14C, 125I</td>
</tr>
<tr>
<td>In vivo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECT</td>
<td>single photons</td>
<td>99m99mTc, 123I, 111In, 201Tl, 11C, 13N, 15O, 18F</td>
</tr>
<tr>
<td>DIAGNOSIS</td>
<td>no particles</td>
<td></td>
</tr>
<tr>
<td>in vivo</td>
<td>biogenic behavior</td>
<td></td>
</tr>
<tr>
<td>PET</td>
<td>T$_{1/2}$ = moderate</td>
<td></td>
</tr>
<tr>
<td>DIAGNOSIS</td>
<td>β^+-decay mode</td>
<td></td>
</tr>
<tr>
<td>in vivo</td>
<td>biogenic elements</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T$_{1/2}$ = short</td>
<td></td>
</tr>
</tbody>
</table>
Diagnostic in vitro RIA

Rosalyn S.YALLOW
Nobel Prize 1977

S.A.BERSON

Introduced the radioimmunoassay (RIA)
assay for insulin based on the principle of competitive binding by antibody of natural and radioactive labeled hormone)
ISOTOPES in MEDICINE

<table>
<thead>
<tr>
<th>Application</th>
<th>Requirement</th>
<th>Isotope</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIAGNOSIS
In vitro</td>
<td>T<sub>½</sub> = long biogenic behavior</td>
<td>³H, ¹⁴C, ¹²⁵I</td>
</tr>
<tr>
<td>DIAGNOSIS
In vivo</td>
<td>single photons no particles biogenic behavior T<sub>½</sub> = moderate</td>
<td>⁹⁹ᵐTc, ¹²³I, ¹¹¹In, ²⁰¹Tl</td>
</tr>
<tr>
<td>SPECT
In vivo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PET
In vivo</td>
<td>β<sup>+</sup>-decay mode biogenic elements T<sub>½</sub> = short</td>
<td>¹¹C, ¹³N, ¹⁵O, ¹⁸F</td>
</tr>
</tbody>
</table>
J.G. Hamilton, M.H. Soley:

“Studies of iodine metabolism by thyroid in situ”

1940, Am. J. Physiol. 131, 135

Photo published 1942

Kidney Isotope Nephrogram
GAMMA CAMERA
H.O. ANGER
1958

Planar scintigram

Scan Thyroid normal

Pre-amplifier
PM-tube
Pb-shielding
NaI-Detector
Collimator
Object

signals
x⁺, x⁻, y⁺, y⁻
electronics
Pb shielding
PM tubes
light guide
window
NaI-Detector
collimator

B. CASSEN
SCANNER

H.O. ANGER

NaI-Detector
Collimator
Object

Planar scintigram

Scan Thyroid normal

Pre-amplifier
PM-tube
Pb-shielding
NaI-Detector
Collimator
Object

B. CASSEN
SCANNER
SPECT

Single Photon Emission Computed Tomography

1984 99mTc DMPE
Nuclear Medicine Instrumentation

<table>
<thead>
<tr>
<th>Point sensitive</th>
<th>DETECTOR’s are</th>
<th>combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>stationary</td>
<td>Place sensitive</td>
<td>with / without septa</td>
</tr>
<tr>
<td>moving</td>
<td>stationary</td>
<td></td>
</tr>
<tr>
<td></td>
<td>moving</td>
<td></td>
</tr>
<tr>
<td>Point collimator</td>
<td>multi-hole collimators</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>single detector</th>
<th>NaI + many PM’s</th>
<th>Multi-ring systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM / NaI -PM</td>
<td>single head</td>
<td>Block detectors BGO</td>
</tr>
<tr>
<td>NaI-PM</td>
<td>1-3 heads</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Probe</th>
<th>Scanner</th>
<th>γ-Camera</th>
<th>SPECT</th>
<th>PET</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 D</th>
<th>2 D</th>
<th>2 D</th>
<th>3 D</th>
<th>2 D and 3 D</th>
</tr>
</thead>
<tbody>
<tr>
<td>dynamic</td>
<td>static</td>
<td>dynamic</td>
<td>dynamic</td>
<td>dyn. & quantitative</td>
</tr>
</tbody>
</table>

- **67GaCIT**
- **99mTc DMPE**

![Images of nuclear medicine equipment and data](image)
Modern SPET Cameras
(GE Medical Systems)
NUCLEAR MEDICINE 2005

DIAGNOSIS

SPECT (SINGLE PHOTON EMISSION TOMOGRAPHY)
- increase of diagnostic value
- new radiopharmaceuticals
- dedicated instrumentation & quantification

PET AS RESEARCH TOOL
- Molecular in vivo biochemistry
- Gene expression
- Clinical research

PET AS CLINICAL TOOL
- Oncology
- Reimbursement of FDG-studies
- Neurology
- Cardiology

Multi-modality Imaging
- combined SPECT-PET (image of the year at the 46.SNM)
- Function and morphology

THERAPIE

NEW APPROACHES IN RADIONUCLIDE THERAPY
- bio-selective antibodies
 (mab = monoclonal antibodies)
- bio-specific peptides
 (Octreotides, others)
- gene therapy
- free chelators like EDTMP
- Lyposomes
- Nanoparticles

NEW RADIONUCLIDES
- for THERAPY
 - β - emitters
 - α-emitters

α-THERAPY & AUGER THERAPY

PET FOR IN VIVO DOSIMETRY
- metallic positron emitters
- labelled drugs
- dose localization

G.BEYER (HUG, Geneva, 2005)
141 keV photons - the strength of 99mTc
99mTcO$_4^-$

0.9% NaCl solution

KIT's

many different 99mTc-tracer

for imaging of many different organ and tissue functions
<table>
<thead>
<tr>
<th>Tc-HMPAO</th>
<th>Tc-MIBI</th>
<th>Tc-O12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tc-NOEt</td>
<td>Tc-P53</td>
<td>Tc-BATO</td>
</tr>
</tbody>
</table>

99mTc Perfusion Tracers
Ventilation study
LUNG Function
Perfusion Study

HEART
Perfusion

99mTc TRACER Examples

BONE
metabolic activity
NUCLEAR MEDICINE 2005

DIAGNOSIS

SPECT *(SINGLE PHOTON EMISSION TOMOGRAPHY)*
- increase of diagnostic value
- new radiopharmaceuticals
- dedicated instrumentation & quantification

PET AS RESEARCH TOOL
- Molecular in vivo biochemistry
- Gene expression
- Clinical research

PET AS CLINICAL TOOL
- Oncology
 - Reimbursement of FDG-studies
- Neurology
- Cardiology

Multi-modality Imaging
- combined SPECT-PET
 - (image of the year at the 46.SNM)
- Function and morphology
 - *(PET – CT)*

THERAPIE

NEW APPROACHES IN RADIONUCLIDE THERAPY
- bio-selective antibodies
 - *(mab = monoclonal antibodies)*
- bio-specific peptides
 - *(Octreotides, others)*
- gene therapy
- free chelators like EDTMP
- Lyposomes
- Nanoparticles

NEW RADIONUCLIDES for THERAPY
- β - emitters
- α - emitters

α-THERAPY & AUGER THERAPY

PET FOR IN VIVO DOSIMETRY
- metallic positron emitters
- labelled drugs
- dose localization

G.BEYER (HUG, Geneva, 2005)
Nuclear Medicine Instrumentation

<table>
<thead>
<tr>
<th>Point sensitive</th>
<th>DETECTOR’s are</th>
<th>combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>stationary</td>
<td>Place sensitive</td>
<td>with / without septa</td>
</tr>
<tr>
<td>moving</td>
<td>stationary</td>
<td></td>
</tr>
<tr>
<td>Point collimator</td>
<td>moving</td>
<td></td>
</tr>
<tr>
<td>multi-hole collimators</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>single detector</th>
<th>NaI + many PM’s</th>
<th>Multi-ring systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM / NaI -PM</td>
<td>single head</td>
<td>Block detectors BGO</td>
</tr>
<tr>
<td>NaI-PM</td>
<td>1-3 heads</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Probe</th>
<th>Scanner</th>
<th>γ-Camera</th>
<th>SPECT</th>
<th>PET</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>67GaCIT</td>
<td>99mTc DMPE</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 D</th>
<th>2 D</th>
<th>2 D</th>
<th>3 D</th>
<th>2 D and 3 D</th>
</tr>
</thead>
<tbody>
<tr>
<td>dynamic</td>
<td>static</td>
<td>dynamic</td>
<td>dynamic</td>
<td>dyn. & quantitative</td>
</tr>
</tbody>
</table>
PET = Positron Emission Tomography

0.51 MeV
FDG-PET Dementia - Alzheimer’s
FDG-PET Melanoma therapy control

before

after
CANCER

About 1,000,000 new cancer cases per year in EU
58% local disease, 42% generalized

45% cured (5 year survival)

22% surgery alone
12% radiation therapy
6% combination surgery + radiation
5% chemo-therapy

just beginning of systemic radionuclide therapy

HOW: expose cancer cells or cancer tissue with sufficient radiation doses?
3D whole-body PET

ECAT HR+
25 year-old male with Melanoma,
71 kg, 178 cm, 625 MBq FDG, 45 min p.i.

ECAT ACCEL
50 year-old male with colon CA
91 kg, 183 cm, 720 MBq FDG, 162 min p.i.

Emission scan time: 54 min
Transmission scan time: 18 min

Emission scan time: 27 min
Transmission scan time: 18 min

Data courtesy of
Kettering Memorial Hospital, Kettering, USA

Data courtesy of
NC PET Imaging Center, Sacramento, USA
The FIRST FDG SYNTHEZIZER

J. Fowler, BNI
SYNTHESIS OF \([^{18}\text{F}]\text{FDG}\)

- Preparation
- “NAKED” FLUORIDE
- PRECURSOR
- Nucleophilic substitution
- INTERMEDIATE
- De-protection
- Cleaning
- PRODUCT
18F]FDG MODULES

- Nuclear Interface
- Coincidence Technology
- FDG microlab (GE)
- JALTECH (EBCO)
- IBA
- CPCU (CTI)
- Sumitomo
- Robot (SCX-
Clinical PET/CT protocols

The biograph

Thomas Beyer, PhD
Fused Image Tomography

Radiology

PET/CT scanner

Nuclear Medicine

Biopsy

Fused image viewer

IMRT

Pre

Post

Diagnosis and Staging

Therapy response

Surgery

Oncology
«Image of the Year » 1999, 46.SNM Los Angeles

CT: 160 mAs; 130 KV_p; pitch 1.6; 5 mm slices

PET: 7 mCi FDG; 2 x 15 min; 3.4 mm slices

University of Pittsburgh Medical Center
Dual-modality PET/CT Prototype

SMART Tomograph (1998)

>300 patients scanned
>70 IV contrast exams

Dual-modality imaging range
biograph

- Height: 158 cm
- Width: 228 cm
- CT PET: 90 cm
- 188 cm
- 145 cm

Dual-modality imaging range
CT - PET or PET - CT?

CT anatomy PET function fused image
CT anatomy PET function fused image

The future of cancer diagnostics – today state of the art
Multi-modality installation