

Flerov Laboratory of Nuclear Reactions

Alexander Karpov (karpov@jinr.ru)

FLNR's basic directions of research:

- Heavy and superheavy nuclei
- Light exotic nuclei

- Radiation effects and physical groundwork of nanotechnology
- Accelerator technologies

Superheavy elements: synthesis and properties

Study of heavy and superheavy elements in the world

Advantages of JINR:

- wide range of accelerated ions;
- > availability of actinide isotopes for targets;
- broad international cooperation (JINR Member States; Livermore & Oak Ridge National Laboratories, Vanderbilt University, University of Tennessee, USA; Paul Scherer Institute, Switzerland, University Louis Pasteur, University Paris Sud, GANIL, France; IMP, Lanzhou, China);
- Iongstanding traditions and a scientific school;
- ➢ full-time availability of an accelerator complex SHE-Factory.

Mendeleev Periodic Table of Chemical Elements (1869)

2019 International Year of the Periodic Table of Chemical Elements

Ontowns are and Recenter mating Ro constanting we a warming the a grand -, Ji=10 He=90 ?= 180 U= SI No=94 Ja= 189 G=52 Mo-16 10=186. ALass' Rh=109,4 Pt=197,4 Se= 50 Ro= 1094 2 198. Ni-Gasy. Pl=106,6 CS+99. 3= 29 - Ca=634 ly=101. 14=200. H=1. ?= 8. H=1. Jen 29 Reality? En 112. 200 SU=237 - 7=68 11=116 An=115? C=12 Jn=118. 4 w chu 0=16 F=10 diz %. Na=23 G=92 ? E= 58? da= 94 9 9 60? Si=95 ? 2 = ASC? Sk=118? Marjano 6 Demoso ha lie système Essai Vune Des éléments A uncarpel Vapris aus poils atomiques of forctions chiniques for Marchelles Manuel so un + yanay 150 al le + mening. yeary admines. loroneston vergao manif, no rac anyo andre waty & Tomonton that segure by-

Periodic Table today (since November, 28, 2016)

1 H hydrogen 1.0080 ±0.0002	2		Key:									13	14	15	16	17	18 2 He heium 4.0026 ±0.0001
3 Li lithium 6.94 ±0.06	4 Be 9.0122 ± 0.0001		atomic num Symbo name abridged stands atomic weigh	ber DI ard								5 B boron 10.81 ± 0.02	6 C carbon 12.011 ± 0.002	7 N nitrogen 14.007 ± 0.001	8 O 0xygen 15,999 ± 0.001	9 F fluorine 18.998 ± 0.001	10 Ne neon 20.180 ± 0.001
11 Na sodium 22.990 ±0.001	12 Mg magnesium 24.305 ± 0.002	3	4	5	6	7	8	9	10	11	12	13 Al aluminium 26.982 ± 0.001	14 Si silicon 28.085 ± 0.001	15 P phosphorus 30.974 ± 0.001	16 S sulfur 32.06 ± 0.02	17 Cl chlorine 35.45 ±0.01	18 Ar argon 39.95 ± 0.16
19 K potassium 39.098 ±0.001	20 Ca calcium 40.078 ± 0.004	21 Sc scandium 44.956 ± 0.001	22 Ti 6tanium 47.867 ±0.001	23 V vanadium 50.942 ± 0.001	24 Cr chromium 51.996 ± 0.001	25 Mn manganese 54.938 ±0.001	26 Fe iron 55.845 ± 0.002	27 Co cobalt 58.933 ±0.001	28 Ni nickel 58.693 ± 0.001	29 Cu copper 63.546 ± 0.003	30 Zn zinc e5.38 ± 0.02	31 Ga galium ^{69.723} ± 0.001	32 Ge germanium 72.630 ± 0.008	33 AS arsenic 74.922 ± 0.001	34 Se selenium 78.971 ± 0.008	35 Br bromine 79.904 ± 0.003	36 Kr krypton 83,798 ± 0.002
37 Rb nubidium 85.468 ±0.001	38 Sr strontium 87.62 ± 0.01	39 Y yttrium 88.906 ±0.001	40 Zr 2irconium 91.224 ±0.002	41 Nb niobium 92.906 ± 0.001	42 Mo motybdenum 95.95 ± 0.01	43 TC technetium	44 Ru ruthenium 101.07 ± 0.02	45 Rh rhodium 102.91 ±0.01	46 Pd paladium 106.42 ±0.01	47 Ag silver 107.87 ± 0.01	48 Cd cadmium 112.41 ±0.01	49 In indiam 114.82 ± 0.01	50 Sn 118.71 ± 0.01	51 Sb antimony 121.76 ± 0.01	52 Te tellurium 127.60 ± 0.03	53 iodine 126.90 ± 0.01	54 Xe xenon 131.29 ± 0.01
55 Cs caesium 132.91 ± 0.01	56 Ba barium 137.33 ± 0.01	57-71 Ianthanoids	72 Hf hafnium 17849 ±0.01	73 Ta tantalum 180.95 ± 0.01	74 W tungsten 183.84 ± 0.01	75 Re rhenium 186.21 ±0.01	76 OS osmium 190.23 ± 0.03	77 Ir iridium 192.22 ± 0.01	78 Pt platinum 195.08 ± 0.02	79 Au gold 196.97 ± 0.01	80 Hg mercury 200.59 ± 0.01	81 TI thallium 204.38 ± 0.01	82 Pb lead 207.2 ± 1.1	83 Bi bismuth 208.98 ± 0.01	84 Po polonium (209)	85 At astatine	86 Rn radon
87 Fr francium	88 Ra radium	89-103 actinoids	104 Rf rutherfordium	105 Db dubnium	106 Sg seaborgium	107 Bh bohrium	108 HS hassium	109 Mt meitnerium	110 DS darmstadtium	111 Rg roentgenium	112 Cn copernicium	113 Nh nihonium	114 Fl flerovium	115 Mc moscovium	116 Lv livermorium	117 Ts tennessine	118 Og oganesson
[223]	[226]		[267]	[268]	[269]	12701	[269]	[277]	[281]	[282]	[285]	[286]	[290]	12901	[293]	[294]	[294]
			57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu

La lanthanum 138.91 ± 0.01	Ce cerium 140.12 ± 0.01	Pr praseodymium 140.91 ±0.01	Nd neodymium 14424 ±0.01	Pm promethium [145]	Sm samarium 150.36 ± 0.02	Eu europium 151.96 ± 0.01	Gd gadolinium 157.25 ± 0.03	Tb terbium 158.93 ± 0.01	Dy dysprosium 162.50 ± 0.01	Ho holmium 164.93 ±0.01	erbium 167.26 ± 0.01	Tm thulium 168.93 ± 0.01	Yb ytterbium 173.05 ± 0.02	Lu Iutetium 174.97 ± 0.01
89 Ac actinium	90 Th thorium 232.04	91 Pa protactinium 231.04	92 U uranium 238.03	93 Np neptunium	94 Pu plutonium	95 Am americium	96 Cm curium	97 Bk berkelium	98 Cf californium	99 Es einsteinium	100 Fm fermium	101 Md mendelevium	102 No nobelium	103 Lr Iawrenciur

Abundance of Elements in the Universe

The 11 Greatest Unanswered Questions of Physics (National Research Council, NAS, USA, <u>2002</u>):

- 1. What is dark matter?
- 2. What is dark energy?
- 3. How were the heavy elements from iron to uranium made?
- 4. Do neutrinos have mass?

•••

2002-2019:

Discovery of gravitational waves \rightarrow first observation of gravitational waves in a neutron star merge \rightarrow start of multimessage astronomy

future understanding of astrophysical nucleosynthesis

At present, our Universe still consists on almost 100% of Hydrogen and Helium

Abundance of Elements in the Universe

D.I. Mendeleev Periodic Table

in the end of massive stars stationary evolution

What is the origin of elements heavier than iron?

Abundance of Elements in the Universe

D.I. Mendeleev Periodic Table

when neutrons start acting

1 H	2	_										13	14	15	16	17	2 He
3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
11 Na	12 Mg	3	4	5	6	7	8	9	10	11	12	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Te	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 1	54 Xe
55 Cs	56 Ba	57- 71	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra																

Are there still heavier elements?

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
89 Ac	90 Th	91 Pa	92 U											

Spontaneous fission limits existence of chemical elements

Drop of water in microgravity (NASA, 2005)

Chart of nuclei (upper part). Vision in 1950th

Neutron number

Spontaneous fission half-lives with microscopic (shell) effects

Chart of nuclei (upper part)

Neutron number

Synthesis of Superheavy Nuclei (since 1999)

UNESCO-Russia Mendeleev Prize

On 3 November, laureates of the UNESCO-Russia Mendeleev International Prize in the Basic Sciences were announced.

The first laureate of the Prize is Scientific Leader of the Flerov Laboratory of Nuclear Reactions JINR Yuri Oganessian "to acknowledge his breakthrough discoveries extending the Periodic Table and for his promotion of the basic sciences for development at the global scale".

Fusion reactions: *left, right or up?*

Factory of superheavy elements

The center for future superheavy element research

Cyclotron DC-280 Factory of superheavy elements

Beam of ⁴⁸Ca

Achieved Intensity: 4.6.10¹³ ions/s

Efficiency: ~50%

Gas-Filled Separator, DGFRS-2

²⁴²Pu 24-cm targetwheel12 sectors

48×220 DSSD & 60×120 SSSD Digital and analog electronics

The first experiment: synthesis of moscovium isotopes (element 115)

${}^{48}\text{Ca}{+}^{243}\text{Am}{\rightarrow}^{291}\text{Mc}{*}$

E (MeV)	239.1	240.9	242.0	243.9	251.0	259.0	total	before
²⁸⁶ Mc (5 <i>n</i>)	-	-	-	-	0	1	1	0
²⁸⁷ Mc (4 <i>n</i>)	-	-	2	-	1	1	4	3
²⁸⁸ Mc (<i>3n</i>)	9	16	52	30	0	3	110	31
²⁸⁹ Mc (2 <i>n</i>)	-	1	4	5	-	-	10	18

Summary of experiments @ Superheavy Element Factory in 2020-2023

Experiments:

 $\label{eq:alpha} \begin{array}{l} {}^{243}\text{Am} + {}^{48}\text{Ca} \rightarrow {}^{291}\text{Mc}^{*} \\ {}^{242}\text{Pu} + {}^{48}\text{Ca} \rightarrow {}^{290}\text{Fl}^{*} \\ {}^{238}\text{U} + {}^{48}\text{Ca} \rightarrow {}^{286}\text{Cn}^{*} \\ {}^{232}\text{Th} + {}^{48}\text{Ca} \rightarrow {}^{280}\text{Ds}^{*} \end{array}$

- 239 new events of synthesis of superheavy nuclides;
- Decay properties 36 isotopes;
- New isotopes: ²⁸⁶Mc, ²⁶⁴Lr, ²⁷⁵Ds, ²⁷⁶Ds, ²⁷²Hs, ²⁶⁸Sg;
- New decay modes: ²⁶⁸Db (alphadecay), ²⁷⁹Rg (spontaneous fission);
- Indication of the 1st excited state in ²⁸⁶FI;
- Test of target stability up to 6.5 pµA of ⁴⁸Ca;

by Yu. Oganessian

Perspectives

TARGETS

- Cooperation with Rosatom (Russia) : Isotopically enriched heavy actinide materials
- Radiochemical laboratory of class 1: Stability studies & Manufacturing and regeneration

- Production of high-intensity beams of ⁵⁰Ti, ⁵⁴Cr and others
- New ECR-28 GHz (2024)

Future of SHE Chemistry

GASSOL – Solenoid-based separator (2025)

- Stopping SH atoms in a small volume of 1-2 cm³
- Chemistry of short-lived SHE $T_{1/2} \ge 30 \text{ ms}$ (up to elements 116-117)

Precise mass measurements of SH isotopes

Measuring masses of SH isotopes with accuracy 10⁻⁷ (30 κeV)

 $T_{1/2} < 0.5 \text{ s}$ Production rate ≤ 1 event/day Background rate ≥ 1 event/s

Requirements for a facility:

- High rate of analysis;
- Low losses;
- High degree of purification;
- Accuracy 10⁻⁷ (30 кеV);
- Mass range 266 294.

The only type of spectrometers gives an opportunity to reach Rm > 1 000 000 at the analysis time < 0.5 s: **MR-TOF Mass-Analyzer**

M.I. Yavor, Journal of Instrumentation, 17 (2022) 1103

Spectroscopy of SH isotopes (SHE factory)

 ${}^{48}\text{Ca} + {}^{242}\text{Pu} \rightarrow {}^{287}\text{Fl} + 3n$

 ${}^{48}\text{Ca} + {}^{243}\text{Am} \rightarrow {}^{288}\text{Mc} + 3n$

Cross section ~ 10 pbarn; Target thickness ~ 1.5×10^{18} at/cm²; Beam intensity of ⁴⁸Ca ~ 3.3×10^{13} pps (5 pµA); $\varepsilon_{\text{transmission}} \sim 50 \%$; 100 days $\rightarrow \sim 300$ events

300 chains \rightarrow 250 gamma quanta detected.

Nuclear reactions

Main tasks in nuclear reactions studies @ U400R

Study of properties of new nuclei.

- **Decay spectroscopy of heavy nuclei:** *actinides and light transactinides*
- Study of fusion-fission and quasifission reactions leading to heaviest nuclei
- Low-energy and spontaneous fission of heaviest nuclei
- Study of nuclei at high excitation energies (several hundred of MeV)

Methods of synthesis of new nuclei

Fusion:

- + any element (question of probability)
- lack of neutrons

Fragmentation:

- + very efficient and universal
- products are lighter than $^{\rm 238}{\rm U}$

Fission:

- + neutron-rich products
- products are much lighter than ²³⁸U

28

20

28

20

Multinucleon transfer (MNT):

- + a way to unknown regions
- very, very complicated technically

Studying the ²³⁸U + ²³⁸U reaction

slide by Yu. Oganessian

Study of exotic nuclei close and beyond the nucleon stability limits

Rare isotope research: long-term perspectives

Experimental program with radioactive ion beams

- Nucleon haloes, neutron skins
- Exotic multi-neutron decays (2n virtual states, 2n and 4n radioactivity)
- Soft excitation mode
- New magic numbers and intruder states
- Two proton radioactivity
- Spectroscopy of exotic nuclei
- Cluster states
- Reactions with halo nuclei
- Astrophysical applications

Under modernization until mid of 2023 2023-2030 - operation

Fragment separator ACCULINNA-II @ U400M

Tasks:

- Nucleon halo, neutron skin;
- Exotic decays:
 β-delayed, 2p, 2n radioactivity, etc.;
- Soft excitation mode;
- New magic numbers;
- Spectroscopy of exotic nuclei;
- Cluster states;
- Reactions with RIBs;
- Astrophysical applications.

ACCULINNA-II

Applied research with heavy-ion beams

IC-100 CYCLOTRON

APPLIED RESEARCH

	parameters									
Accele	rated ions	²² Ne ⁺⁴	⁴⁰ Ar ⁺⁷							
		⁵⁶ Fe ⁺¹⁰	⁸⁶ Kr ⁺¹⁵							
		127 + 22 $132 \times -+24$	¹³² Xe ⁺²³							
		184 \A/ +31	184 \A/ +32							
		10400.01	104 102							
A/Z rat	io	5.5 – 5.95								
lon ene	ergy	0.9-1.2	MeV/A							
Pole di	ameter	1 m								
Vacuur	n	5·10 ⁻⁸ Torr								
⁸⁶ Kr ¹⁵⁺	beam intensity	1.4·10 ¹² pps								
¹³² Xe ²³	+ beam intensity	~ 101	² pps							

Commissioned: Reconstructed: 1985 2002

Setups:

- polymer film irradiation unit with uniform implantation over a 600x200 mm target
- box for material science research

MICROTRON MT-25

parameters								
Energy range	5 to 25 MeV							
Pulsed beam current	20 mA							
γ-ray flux	10 ¹⁴ pps							
Thermal neutron flux	10 ⁹ pps cm ⁻²							
Fast neutron flux	10 ¹² pps							

Applications:

- γ -activation analysis
- neutron activation analysis
- isotope production for analytical purposes
- study of nuclear reaction induced by γ -quanta

NANOLAB

Scanning electron microscopy

FESEM Hitachi SU8020 Resolution of 1 nm at 15 kV X-ray element microanalysis (EDS) Deceleration mode (500 eV)

X-ray photoelectron spectroscopy K-Alpha

Chemical analysis of thin layers and surfaces

SEM Hitachi S3400N Resolution of 1 nm at 15 kV EDS, WDS Electron backscattering diffraction

NTEGRA Spectra – Atomic force microscopy (AFM)/ Confocal Raman & Fluorescence

Studies of nanostructures induced by single ion impact on the surface of solids; depthresolved Raman and photoluminescence spectra

Multi-functional chemical laboratory

(studies of heavy ion irradiation effects, modification of materials, polymers, membranes)

Capillary porometer Porolux

KRUESS DSA100

system

Precise characterization of ultraand microfiltration membranes

Investigations of static and dynamic wetting phenomena

Production of track membranes (IC-100)

Accelerator-born nanostructures

new composite materials:

- extended layers adhesion strength
- increased thermal resistance
- flexible printed circuit boards

Polymer composites produced with the use of track membranes nanotubes nanowires

Radiation Hardness Tests For Electronic Components

Development of radiation-proofed electronic components is the first priority task of the modern high-class electronic industry.

Long-distance space flights, long-lived sputniks, etc. are extremely critical to the quality of electronic chips.

Thank you for attention!

