

NEUTRON ACTIVATION ANALYSIS AND RELATED ANALYTICAL TECHNIQUES IN ENVIRONMENTAL AND LIFE SCIENCES

Assistant

Researcher

at

Nanotechnology

Research

Centre

Assistant lecturer

at Microbiology & Immunology department

Sabah Ali Cairo University, Egypt

Under supervision of **Inga Zinicovscaia**,

Head of the Sector of Neutron Activation Analysis and Applied Research

Islam Gomaa British University, Egypt

Frank laboratory of neutron physics

 Major directions of FLNP research program are: neutron-nuclear investigations, condensed matter physics and applied research.

Active bio-monitoring via Moss

Moss (Pleurosium Schreberi) & bags

General scheme of sample preparation

Cleaning

Weighing

Samples packing

Compare the adsorption efficacy of organic and inorganic sorbents for terbium removal

Spirulina platensis Organic bio sorbent

Indium salt Inorganic sorbent

- Optimization of parameters (time, pH, concentration, temperature) required for maximum adsorption
- Data analysis using adsorption models

	Results								FINE		
Isotherms											
Model	Langmuir				Freundli	ch	Temkin				
parameters	Qm	b	R ²	KF	n	R ²	р⊥	ат	R ²	•	
spirulina	33.65	0.911	0.91	1.61	1.78	0.903	485.51	0.415	0.88	l l	
Indium salt	94.67	0.015	0.97	3.69	1.66	0.944	116.7	0.144	0.97		

Kinetics											
Model	Pseudo-First-Order			Pseuc	lo-Secon	d-Order	Elovich				
parameters	Qe	K 1	R ²	qe	k 2	R ²	A	b	R ²		
spirulina	5.30	2.41	0.97	5.31	3.11	0.96	3.54	12.73	0.53		
Indium salt	7.23	155	0.961	7.23	2.4	0.961	5.681	12.7	0.964		

.

Conclusion

- High Sensitive analytical techniques as Neutron Activation Analysis (NAA) and Inductive coupled plasma (ICP-OES).
- Effect of different parameters on removal of Terbium was accessed (pH ,Time, Temperature and Concentration).
- Adsorption removal process was rapid for both sorbents but regarding temperature independent for spirulina and dependent for Indium salt.
- Langmuir model fitted better the data for both of sorbents but the adsorption capacity of indium salt was 3X higher than for *Spirulina*.
- Kinetic data refer that Pseudo-First-Order model fitted well with spirulina and Elovich model for Indium Salt which devoted to chemical sorption.

Thank You!

