

Joint Institute for Nuclear Research (JINR) Dzhelepov Laboratory of Nuclear Problems Dubna

Project: Radiation protection and safety of radiation sources

Presented by

Supervisor Dr. Said Abou El-Azm

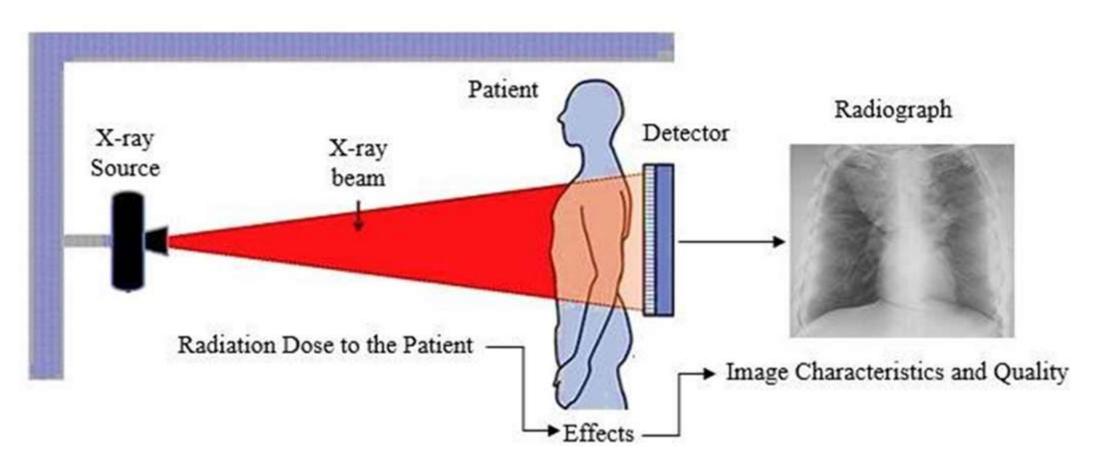
Nangamso Ndzamela

Katlego Tshito

Salizwa Vizkhungo Mzamane

Onkarabetse Tau

Katlego Kondile


<u>Aim</u>

- Sound basis in radiation protection and the safety of radiation sources
- To provide the necessary practical skills and basic tools in the radiation protection field.
- Objectives :
- Different types of radiation sources, and detection of radiation
- Identifying unknown sources by using energy calibration curve
- Calculating the resolution
- Determining the attenuation coefficient for different materials

Scientific Problem

- A detector is a device used to detect electromagnetic waves or radiation.
- Medical imaging has experienced a revolution due to advancements in precise, less intrusive, and faster equipment. Designing a system requires considering various requirements, such as detector type, size, and contrast resolution, to analyse desired applications.
- Photon counting spectral detectors (PCSDs) require rapid and accurate energy calibration in order to identify and characterize biocomponents or contrast agents in tissues. It is well known that using the x-ray tube voltage as a reference for energy calibration is an efficient way.

Application: medical imaging system

EQUIPMENT DISCRIPTION

EQUIPMENT DISCRIPTION

X-ray:

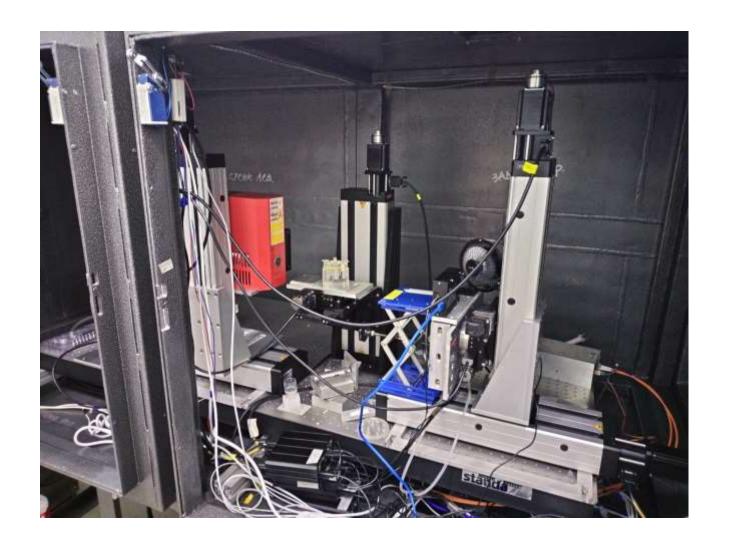
Hmmatsu company

Applied volt: 100kV

Current: 50 micro A

standard sources: Co-60, Cs-137, and Am-241

Specification of a detector


Cadmium Telluride diode (CdTe)

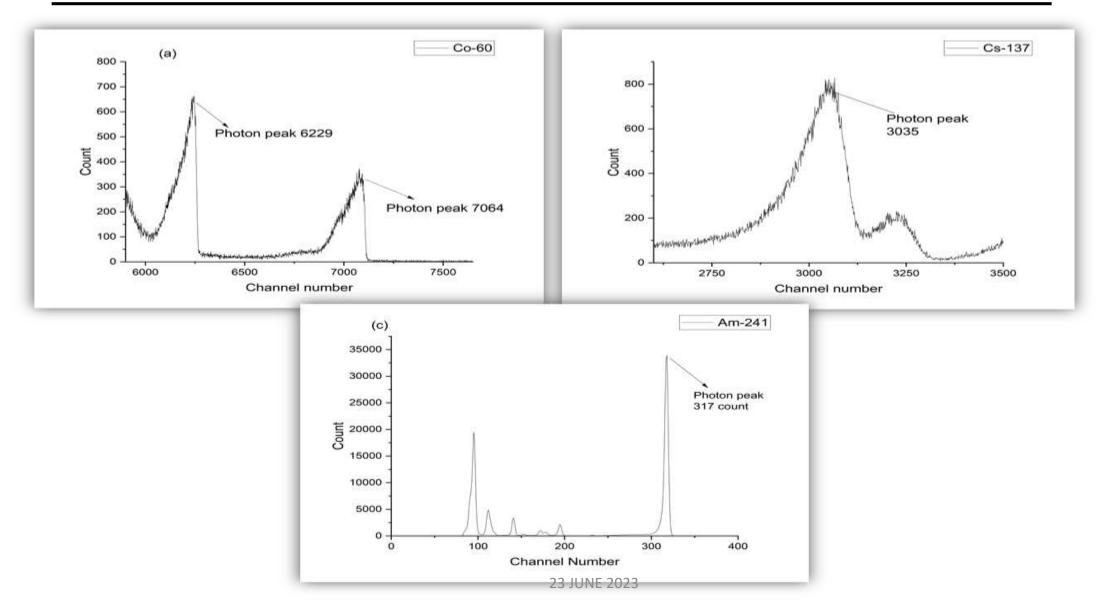
Detector area (25mm²)

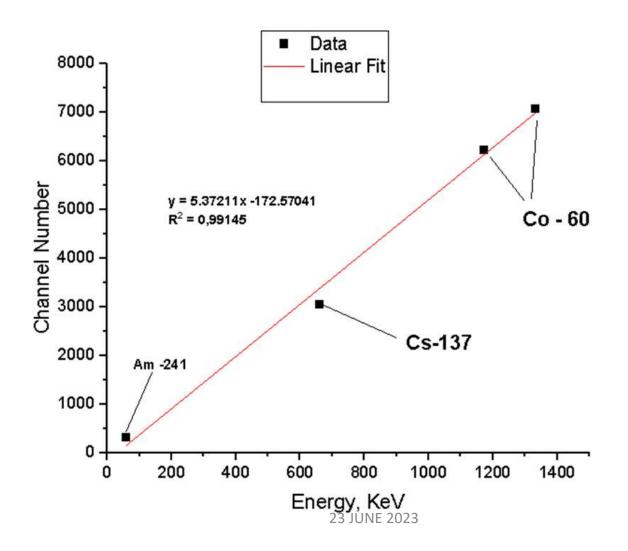
• Sensor 500μ

• Detector thickness 1mm

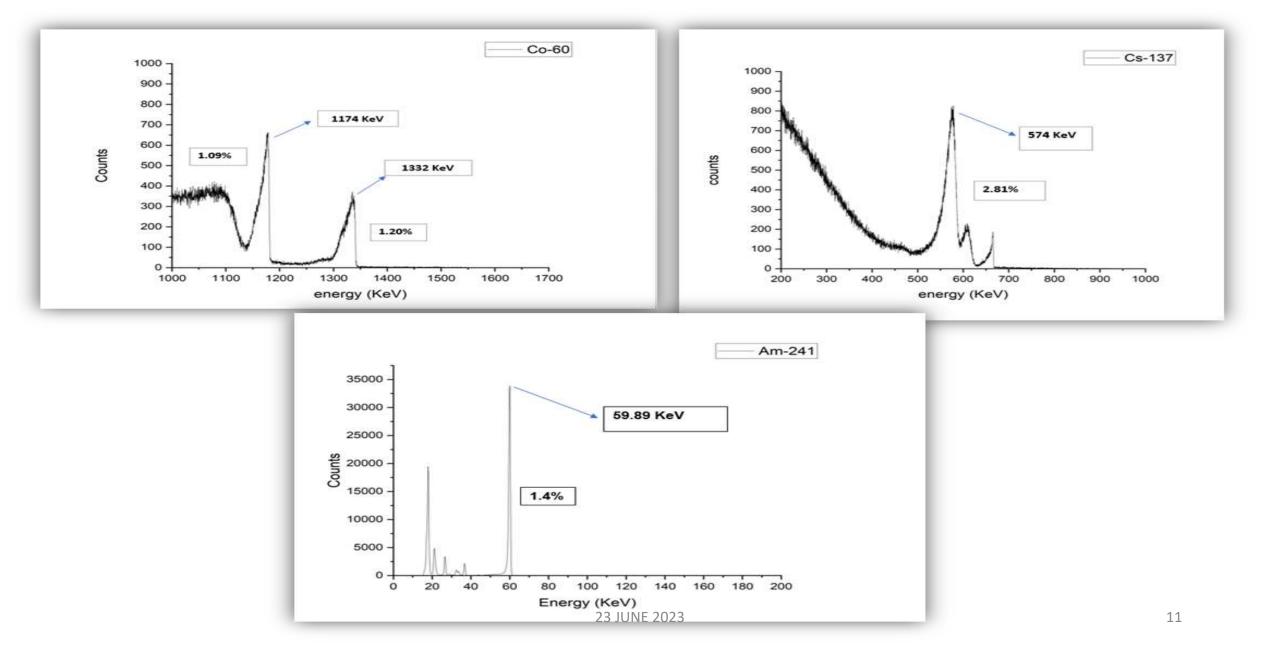
Energy resolution 1-2 % for energy 60keV

object

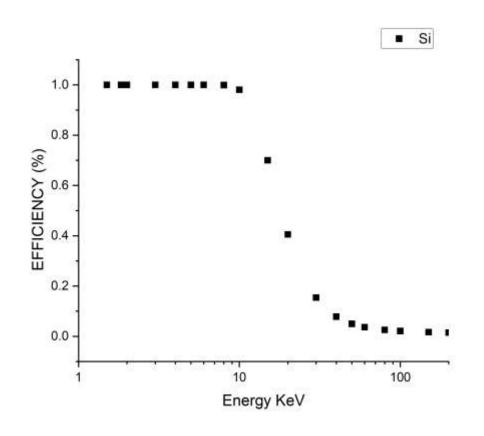

EXPERIMENT DISCRIPTION

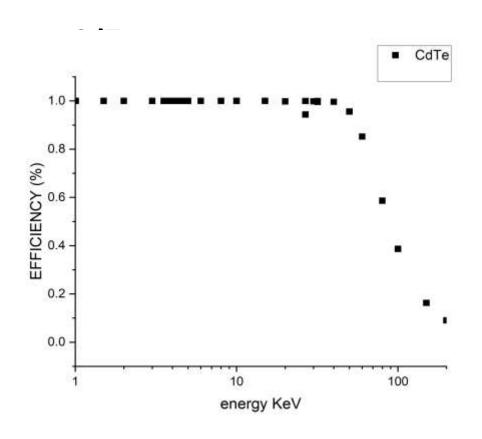

Results:

- Detector calibration
- Detector resolution
- Detector efficiency
- Identified different materials and concentration using CdTe detector


Results: Plot of channel number and count

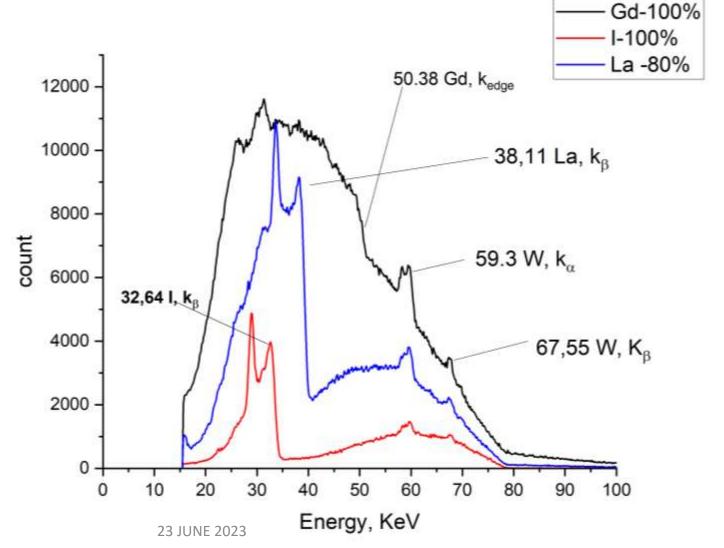
Results: Calibration curve and equation

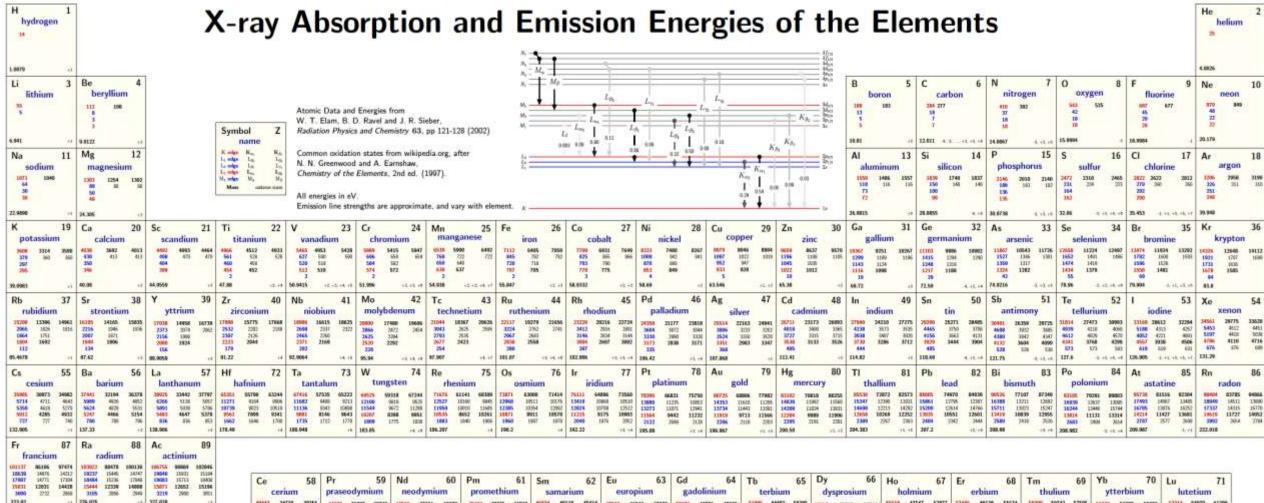

Results: spectra using calibration curve and the resolutions.



Results: Registration Efficiency of Detectors calculation

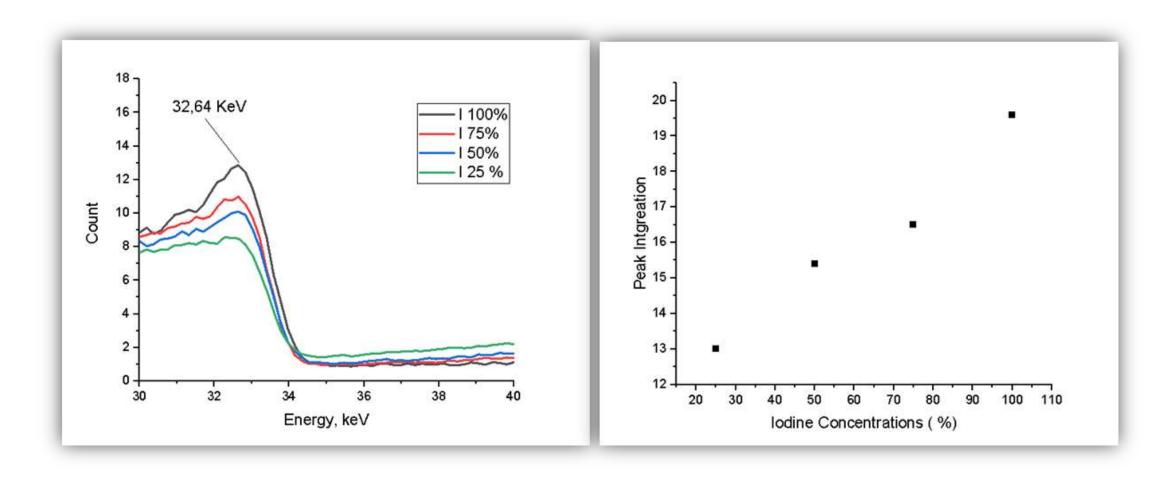
- Theoretically we calculated the efficiency of detector CdTe and Si for comparison
- attenuation coefficient equation: $I = I_o e^{-\mu x}$


The registration of the Efficiency detector (500µm)



Results: identified different materials Using CdTe Detector

- To investigate the performance of CdTe, we used the x-ray tube ,applied voltages
 100kV and current 50 Micro A
- Samples: Gadolinium, Lanthanum, and Iodine.


Marie Skłodowska Curie

https://xrayabsorption.org/xraytable Version 4, 2020-April-19

ī.		
Т	23	
4	X,5	
S.	Ηī	

Ce	129	58	Pr	- 69	59	Nd	[2] SS	60	Pm	1233	61	Sm	0.7	62	Eu	53	63		SALES ELL	64	Tb	200	65	Dy	337	66	Ho	000 C	7	Er	68	Tm		69	Yb	VG 4553	70	Lu	71
cerium		praseodymium		neodymium			promethium			samarium			europium			gadolinium			terbium			dysprosium		m	holmium			erbium		thulium		7.00	ytterbium		1	lutetium			
63463 6546 6164 5723 884 148.12	34736 5361 5362 4839 886	39356 5276 6956 5634 902 +0, +d		5402 5005 507	5825 5849 686	43548 7128 6722 6708 966 144.34	37361 525 575 5228 573	42272 5723 6602 6688 1802	45384 7428 7603 6450 1807 144.862	38725 6071 5061 5432 1003	43627 1957 8803 6339 1969 +1	#1824 7737 7512 6738 1083 158.36	60018 6005 5633 1678	45414 6086 7383 6587 7166 +4	8052 7617 6077 1128 251.96	41542 6571 6058 5850 3123	47838 8438 3482 6844 1163 63, 15	50036 5378 7938 7243 1160 257.25	42694 6612 6708 6853 1361	40695 6000 7787 7390 1213	8798 8798 8252 7314 1291 138.825	44463 1997 9675 6223 1298	56385 8540 8182 7364 1360 +6 +6	9046 9046 9581 7796 1207 162.5	7370 7370 7346 6488 1,354	52113 7264 9407 7836 1305	0394 8998 8971 1351 154.93	A7547 53 A813 7536 6 6730 7 1340	#77 #71 158 911 388 -0	17486 48629 8751 FEE 8264 700 8350 6840 1490 140	15674 7740 9066 8190 1 3445	58300 18118 9617 8648 1648 1648	50743 8030 6502 7389 (46)	\$7505 8000 \$447 \$472 1510 +8	61111 10486 9878 9866 1539 173,04	\$2500 8500 8400 7416 9506	50303 8303 6767 8753 5574	10070 10070 10040 9264 1500 174,967	54079 6129 1840 801 8718 1814 7655 903 1500 301
	horium	90	1000	Pa 91 protactinium		U 92 uranium			Np 9: neptunium			Pu 94 plutonium			Am 95 americium			Cm 96					97 m	Cf 98 californium		2000	Es 99 einsteinium		9	Fm fermiu	100 ermium		Md 101 mendelevium		No 102 nobelium		Lr 103		
20472 19683 16366 3332 232.638	99354 30428 36202 12968 2998	25042 25042 26062 15588 2588	203 567	95868 95 16621 14 16701 15 13280 42 1671	100427 16204 19671 15600 1340	21757 20948 27166 3862 238.051	90440 17414 17228 13624 2364	111383 20175 20178 16388 2343 14. +6	22427 21600 17600 3664 237,048	181050 17942 17751 13946 3250	114234 17861 20794 16794 3425	23384 23384 22364 18657 3775 234.652	163734 18541 18396 14262 1939	117220 17557 21600 17211 3534	194992 23888 22952 18510 3890 341.061	186672 18110 18056 19628 3429	120384 12068 22072 17639 3635	13624) 34526 23651 18076 4309 247.07	186271 18600 13427 14963 95.25	123403 12529 22725 18654 3740	25256 25256 26371 19435 4127 247.07	382829 38280 29008 25308 3606	196580 19138 29435 18480 9842	25000 25000 25000 19607 4347 251.06	135030 30094 39034 15660 3700	196823 19683 24157 19916 3946													

Results: identified different concentrations of iodine using CdTe detector

(a)Shows the edge energy for different iodine concentrations, (b) is the integrations graph of iodine concentrations

Conclusion

- Understanding about radiation detection, protection, and safety from radiation sources
- Gaining practical and computational knowledge regarding:
- 1. Energy calibration of CdTe detector and evaluation of detector resolution
- 2. Determining the efficiency of the detector by determining the attenuation coefficient
- 3. When comparing the two detectors, we can state that the CdTe detector has a higher efficiency and so is more efficient. CdTe Is a promising semiconductors detector material, offers high detection efficiency up to 100KeV making it advantageous for diagnostic X-ray imaging
- 4. analyzing spectra acquired by CdTe detector and identifying different materials (Gd, I, and La)
- 5. Separation of materials at different concentration

References

- Lee JS, Kang D-G, Jin SO, Kim I, Lee SY. Energy Calibration of a CdTe Photon Counting Spectral Detector with Consideration of its Non-Convergent Behavior. Sensors. 2016; 16(4):518. https://doi.org/10.3390/s16040518
- Joint Institute for Nuclear Research. (n.d.). Research Facilities. [online] Available at: http://www.jinr.ru/jinr_facilities-en/ [Accessed 22 Jun. 2023].
- "Detector." Merriam-Webster.com Dictionary, Merriam-Webster, https://www.merriam-webster.com/dictionary/detector. Accessed 21 Jun. 2023.