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Puzzles of multiplicity

Multiplicity - number of created 
secondary particles

High Multiplicity (HM) events - 
connected with collective 

behaviour (ridges, flow, shock 
waves etc.)

Bauer, Julia & Muller, Thomas. (2019). Prospects for the Observation 
of Electroweak Top Quark Production with the CMS Experiment.
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Puzzles of multiplicity

Multiplicity - number of created 
secondary particles

Hadronization - not fully 
understanded process

Model vs. Data - we have observed 
discrepancies for high multiplicity 

events

Bauer, Julia & Muller, Thomas. (2019). Prospects for the Observation 
of Electroweak Top Quark Production with the CMS Experiment.
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High Multiplicity (HM) events - 
connected with collective 

behaviour (ridges, flow, shock 
waves etc.)



Puzzles of multiplicity
Hadronization - not fully 
understanded process

Model vs. Data - we have observed 
discrepancies for high multiplicity 

events
1. e-e+ annihilation 
2. quarkonia decay 
3. pp interactions 
4. p(anti)p annihilation

Multiparticle production in :

Will be presented
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Toolkit

Spectrometer with Vertex Detector

SVD2 collaboration



G(z) = ∑
n

Pnzn

F1 = G′�(z) |z=1 = ∑
n

Pn n zn−1 |z=1 = n

F2 = G′�′�(z) |z=1 = n(n − 1) = n2 − n

Instead of hard-working with 
multiplicity distribution (MD) we use 


generating function (GF)

For cumulants we get

f2 = G′�′�− (G′�)2 = F2 − F2
1

second correlative moment

Pn =
1
n!

∂n

∂zn
G(z) |z=0

How to get multiplicity distribution from GF

 
Poisson distribution (PD)

f2 = 0

}

Binomial distribution (BD)
f2 < 0

Negative Binomial distribution (NGB)
f2 > 0

Description of particle production 
Two Stage Model (STM)

if             - independent process of formation f2 = 0}
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e+e- annihilation

1. stage 2. stage

e+e− → γ(Z0) → (q, g) → ? → hadrons

qg-cascade hadronization
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e+e- annihilation - I. stage
qg-cascade is based on pQCD

Three elementary processes :

probability Ã

probability A

probability B

gluon splitting

bremsstrahlung

quark-(anti)quark 
pair creation

High

Low
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e+e- annihilation - I. stage
qg-cascade is based on pQCD

Three elementary processes :

probability Ã 

probability A

probability B

gluon splitting

bremsstrahlung

quark-(anti)quark 
pair creation

MD

gluon jet (Farry)

quark jet (NBD)

Pg
m =

1
m̄ (1 −

1
m̄ )

m−1

Pq
m =

kp(kp + 1) . . . (kp + m − 1)
m! ( m̄

m̄ + kp )
m

(
kp

m̄ + kp )
kp

kp =
A
Ã

High

Low
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e+e- annihilation - II. stage

BD

NBD

At the low energy region the contribution of 
hadronization is predominant => we choose BD  

(at low energy f2<0)

PH
n = Cn

Np (
n̄h

p

Np )
n

(1 −
n̄h

p

Np )
Np−n

n̄h
p

Np

mean multiplicity 

maximum number of hadrons 
formed from single parton at its 
passing through hadronization
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e+e- annihilation 
Convolution of two stages

is based on :

- soft dicolouration

- equality of the hadron production probabilities from quark and gluon at the second stage

Pn(s) = Ω
Mg

∑
m=0

PP
m Cn

(2+αm)N ( n̄h

N )
n

(1 −
n̄h

N )
(2+αm)N−n

Ω
Mg

normalization factor

number of active gluons

chn
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)
ch
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n
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)
ch

P(
n

8−10

6−10

4−10

2−10

1
OPAL, 183 GeV

     TSM

Data vs. Model
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Three-gluon decay of quarkonia ϒ(9.46), ϒ(10.02)

ϒ𝛾e-

e+

Pn(s) = ∑
m′�=0

(m′� + 1)(m′� + 2)
2(m̄ /3)2 (1 −

1
m̄ /3 )

m′ �

Cn
3+m′�Ng (

n̄h
g

Ng )
n

(1 −
n̄h

g

Ng )
(3+m′�)Ng−n

m′� = m − 3
Δn̄ = n̄(Υ → 3g) − n̄(e+e− → qq̄)

MD g-jet is Farry

Δn̄(s)exp ≈ Δn̄(s)theor ≈ 0.8
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pp interactions
- Applying same procedure led to smaller hadronization parameters as in e-e+


- Decreasing number of valence quark, parameters start grow

- Gluon Dominance Model (GDM)

Fragmentation 
(vacuum)

Recombination 
(quark-gluon system)

R ≈ 1R =
NB

Nπ0
≪ 1
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pp interactions

Pn(s) = α1

Mg1

∑
m1=1

m1
m1e−m1

m1!
Cn−2

m1N ( n̄h

N )
n−2

(1 −
n̄h

N )
m1N−(n−2)

+ α2

Mg2

∑
m2=1

(2m2)m2e−2m2

m2!
Cn−2

m2N ( n̄h

N )
n−2

(1 −
n̄h

N )
m2N−(n−2)

Superposition of 2 distributions
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At HM region formation of two gluon 
jets predominates in the case b) in 

comparison with the case a).

⎨ ⎨

single gluons 
(without branching)

fission gluons 
(with branching)



p(anti)p annihilation
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G(z) = c0

M0

∑
m

PG
m [1 +

n̄h

N
(z − 1)]

mN

+ c2z2
M2

∑
m

PG
m [1 +

n̄h

N
(z − 1)]

mN

+ c4z4
M4

∑
m

PG
m [1 +

n̄h

N
(z − 1)]

mN

}
“0” topology -> 3 𝜋0

“2” topology -> 𝜋0, 𝜋-, 𝜋+

“4” topology -> 𝜋+, 𝜋+, 𝜋-, 𝜋-
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Conclusion
• description of MD in e+ e− and p(anti)p annihilation, pp interactions and 

3-gluon decay of ϒ introducing the hadronization scheme in a wide 
energy region -> using mathematical approaches of probability theory


• fitting experimental data with GDM using ROOT packages


• Protvino: SVD2 setup - for the first time SVD Collaboration got the 
evidence to the pionic Bose-Einstein condensate formation in HM region
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