Our Crew at VBLHEP

Joint Institute for Nuclear Research

Dubna, Russia
Sukhoi State Technical
University of Gomel Gomel, Belarus

Dr. Elena Kokoulina

Pavol Jozef Šafárik University Košice, Slovakia

Puzzles of multiplicity

International Student Practice Joint Institute for Nuclear Research

Klaudia Sajdaková
Lukáš Tropp
Dubna, 26. 7. 2019

Puzzles of multiplicity

Bauer, Julia \& Muller, Thomas. (2019). Prospects for the Observation of Electroweak Top Quark Production with the CMS Experiment.

Multiplicity - number of created secondary particles

High Multiplicity (HM) events connected with collective behaviour (ridges, flow, shock waves etc.)

Puzzles of multiplicity

Hadronization - not fully understanded process

Model vs. Data - we have observed discrepancies for high multiplicity events

ATLAS Coll. A. Morley, 2015

Bauer, Julia \& Muller, Thomas. (2019). Prospects for the Observation of Electroweak Top Quark Production with the CMS Experiment.

Multiplicity - number of created secondary particles

High Multiplicity (HM) events connected with collective behaviour (ridges, flow, shock waves etc.)

Puzzles of multiplicity

Hadronization - not fully understanded process

Model vs. Data - we have observed discrepancies for high multiplicity events

ATLAS Coll. A. Morley, 2015

Will be presented

Multiparticle production in :

1. $\mathrm{e}^{-e^{+}}$annihilation
2. quarkonia decay
3. pp interactions
4. p(anti)p annihilation

Toolkit

SVD2 collaboration

Spectrometer with Vertex Detector

Description of particle production Two Stage Model (STM)

Instead of hard-working with multiplicity distribution (MD) we use generating function (GF)

$$
G(z)=\sum_{n} P_{n} z^{n} \quad P_{n}=\left.\frac{1}{n!} \frac{\partial^{n}}{\partial z^{n}} G(z)\right|_{z=0}
$$

For cumulants we get
$\left.\begin{array}{l}F_{1}=\left.G^{\prime}(z)\right|_{z=1}=\left.\sum_{n} P_{n} n z^{n-1}\right|_{z=1}=\bar{n} \\ F_{2}=\left.G^{\prime \prime}(z)\right|_{z=1}=\overline{n(n-1)}=\overline{n^{2}}-\bar{n}\end{array}\right\} \quad \begin{gathered}\text { second correlative moment } \\ f_{2}=G^{\prime \prime}-\left(G^{\prime}\right)^{2}=F_{2}-F_{1}^{2}\end{gathered}$

Poisson distribution (PD) $\}$

$$
\left.f_{2}=0 \quad\right\}
$$

if $f_{2}=0$ - independent process of formation

Binomial distribution (BD)

$$
f_{2}<0
$$

How to get multiplicity distribution from GF

$\mathrm{e}^{+\mathrm{e}^{-} \text {annihilation }}$

$$
e^{+} e^{-} \rightarrow \gamma\left(Z^{0}\right) \rightarrow(q, g) \rightarrow ? \rightarrow \text { hadrons }
$$

> 1. stage qg-cascade
2. stage
hadronization

$\mathrm{e}^{+} \mathrm{e}^{-}$annihilation - I. stage

qg-cascade is based on pQCD
Three elementary processes :

bremsstrahlung	probability A
gluon splitting	probability Ã
quark-(anti)quark	
pair creation	probability B

High

Low

$\mathrm{e}^{+} \mathrm{e}^{-}$annihilation - I. stage

qg-cascade is based on pQCD
Three elementary processes :

bremsstrahlung probability A

gluon splitting probability Ã
probability B

$$
P_{m}^{g}=\frac{1}{\bar{m}}\left(1-\frac{1}{\bar{m}}\right)^{m-1}
$$

MD

$$
P_{m}^{g}=\frac{1}{\bar{m}}\left(1-\frac{1}{\bar{m}}\right)^{m-1} \quad k_{p}=\frac{A}{\tilde{A}}
$$

$\mathrm{e}^{+} \mathrm{e}^{-}$annihilation - II. stage

At the low energy region the contribution of hadronization is predominant => we choose BD (at low energy $\mathrm{f} 2<0$)

$$
P_{n}^{H}=C_{N_{p}}^{n}\left(\frac{\bar{n}_{p}^{h}}{N_{p}}\right)^{n}\left(1-\frac{\bar{n}_{p}^{h}}{N_{p}}\right)^{N_{p}-n}
$$

$$
\bar{n}_{p}^{h}
$$

mean multiplicity
maximum number of hadrons formed from single parton at its passing through hadronization

$\mathrm{e}^{+} \mathrm{e}^{-}$annihilation
 Convolution of two stages

is based on :

- soft dicolouration
- equality of the hadron production probabilities from quark and gluon at the second stage
$P_{n}(s)=\Omega \sum_{m=0}^{M_{g}} P_{m}^{P} C_{(2+\alpha m) N}^{n}\left(\frac{\bar{n}^{h}}{N}\right)^{n}\left(1-\frac{\bar{n}^{h}}{N}\right)^{(2+\alpha m) N-n}$
$\Omega \quad$ normalization factor
$M_{g} \quad$ number of active gluons

> Data vs. Model

Three-gluon decay of quarkonia $\Upsilon(9.46), Y(10.02)$

MD g-jet is Farry

$$
\begin{array}{r}
P_{n}(s)=\sum_{m^{\prime}=0} \frac{\left(m^{\prime}+1\right)\left(m^{\prime}+2\right)}{2(\bar{m} / 3)^{2}}\left(1-\frac{1}{\bar{m} / 3}\right)^{m^{\prime}} C_{3+m^{\prime}}^{n} N_{g}\left(\frac{\bar{n}_{g}^{h}}{N_{g}}\right)^{n}\left(1-\frac{\bar{n}_{g}^{h}}{N_{g}}\right)^{\left(3+m^{\prime}\right) N_{g}-n} \\
m^{\prime}=m-3 \\
\Delta \bar{n}= \\
\bar{n}(\Upsilon \rightarrow 3 g)-\bar{n}\left(e^{+} e^{-} \rightarrow q \bar{q}\right) \\
\Delta \bar{n}(s)_{\exp } \approx \Delta \bar{n}(s)_{\text {theor }} \approx 0.8
\end{array}
$$

pp interactions

- Applying same procedure led to smaller hadronization parameters as in $\mathrm{e}^{-} \mathrm{e}^{+}$
- Decreasing number of valence quark, parameters start grow
- Gluon Dominance Model (GDM)
Fragmentation
(vacuum)

$$
R=\frac{N_{B}}{N_{\pi^{0}}} \ll 1
$$

pp interactions

At HM region formation of two gluon jets predominates in the case b) in comparison with the case a).

Superposition of 2 distributions

$\mathrm{p}($ anti) p annihilation

(ब) (1)
 d

" 0 " topology -> $3 \pi^{0}$

" 2 " topology $->\pi^{0}, \pi^{-}, \pi^{+}$
" 4 " topology -> $\pi^{+}, \pi^{+}, \pi^{-}, \pi^{-}$

Conclusion

- description of MD in e+e- and p(anti)p annihilation, pp interactions and 3-gluon decay of Υ introducing the hadronization scheme in a wide energy region -> using mathematical approaches of probability theory
- fitting experimental data with GDM using ROOT packages
- Protvino: SVD2 setup - for the first time SVD Collaboration got the evidence to the pionic Bose-Einstein condensate formation in HM region

Thank you for your attention

Special thanks to:
Organisers
\&
Dr. Elena Sergeevna Kokoulina

