

Flerov Laboratory of Nuclear Reactions

LABORATORY FOUNDER Georgiy Nikolaevich FLEROV

1913 – 1990

1940	Discovery of spontaneous fissio of uranium						
1942-1950	Participation in Russian atomic project						
1955	First beams of accelerated heavy ions						
1957	Foundation of Laboratory of Nuclear Reactions (Dubna)						
1962-1975	Synthesis of new elements: 102, 103, 104, 105 (Dubnium), 106, 107						
2012	Element 114 named Flerovium						

FLNR's Basic Directions of Research

1. Heavy and superheavy nuclei:

- synthesis and study of properties of superheavy elements
- chemistry of new elements
- fusion-fission and multi-nucleon transfer reactions
- nuclear-, mass-, & laser-spectrometry of SH nuclei.

2. Light exotic nuclei:

- properties and structure of light exotic nuclei
- reactions with exotic nuclei.

3. Radiation effects and physical groundwork of nanotechnology

4. Accelerator technologies

Staff : ~450 people

Heavy and superheavy nuclei

Mendeleev's Table (~150 years ago)

Onbuns accinentes success maby &, constantilles un arracer varet cher a gaden Ge, D. Mendeunete. $\begin{array}{c} \begin{array}{c} \mathcal{N}_{i}=G=S\mathcal{Y}, & \mathcal{P}_{i}=1/26/6 \quad \mathcal{C}_{s}\mathcal{F}\mathcal{Y}, \\ \mathcal{N}_{i}=G=S\mathcal{Y}, & \mathcal{P}_{i}=1/26/6 \quad \mathcal{C}_{s}\mathcal{F}\mathcal{Y}, \\ \mathcal{N}_{i}=\mathcal{Q}, & \mathcal{N}_{i}=2\mathcal{Y}, & \mathcal{N}_{i}=1/26, \\ \mathcal{N}_{i}=\mathcal{Q}, & \mathcal{N}_{i}=2\mathcal{Y}, & \mathcal{N}_{i}=2\mathcal{Y}, \\ \mathcal{N}_{i}=\mathcal{Q}, & \mathcal{N}_{i}=2\mathcal{Y}, & \mathcal{N}_{i}=6\mathcal{S}, \\ \mathcal{N}_{i}=\mathcal{N}_{i}, & \mathcal{N}_{i}=2\mathcal{Y}, & \mathcal{N}_{i}=6\mathcal{S}, \\ \mathcal{N}_{i}=\mathcal{N}_{i}, & \mathcal{N}_{i}=2\mathcal{Y}, & \mathcal{N}_{i}=6\mathcal{S}, \\ \mathcal{N}_{i}=\mathcal{N}_{i}, & \mathcal{N}_{i}=2\mathcal{Y}, & \mathcal{N}_{i}=2\mathcal{Y}, \\ \mathcal{N}_{i}=\mathcal{N}_{i}, & \mathcal{N}_{i}=\mathcal{N}_{i}, & \mathcal{N}_{i}=\mathcal{N}_{i}, \\ \mathcal{N}_{i}=\mathcal{N}_{i}, & \mathcal{N}_{i}=2\mathcal{Y}, & \mathcal{N}_{i}=2\mathcal{Y}, \\ \mathcal{N}_{i}=2\mathcal{Y}, & \mathcal{N}_{i}=2\mathcal{Y}, & \mathcal{N}_{i}=2\mathcal{Y}, \\ \mathcal{N}_{i}=2\mathcal{Y}, & \mathcal{N}_{i}=2\mathcal{Y}, \\ \mathcal{N}_{i}=2\mathcal{Y}, & \mathcal{N}_{i}=2\mathcal{Y}, \\ \mathcal{N}_{i}=\mathcal{N}_{i}, & \mathcal{N}_{i}=2\mathcal{N}_{i}, \\ \mathcal{N}_{i}=\mathcal{N}_{i}=2\mathcal{N}_{i}, \\ \mathcal{N}_{i}=\mathcal{N}_{i}=2\mathcal{N}_{i}, \\ \mathcal{N}_{i}=2\mathcal{N}_{i}, & \mathcal{N}_{i}=2\mathcal{N}_{i}, \\ \mathcal{N}_{i}=2\mathcal{N}_{i}, & \mathcal{N}_{i}=2\mathcal{N}_{i}, \\ \mathcal{N}_{i}=2\mathcal{N}_{i}, \\ \mathcal{N}_{i}$? $\mathcal{L}_{=} 57$? $\mathcal{L}_{a} = 94$? $\mathcal{Y}_{=} 60$? $\mathcal{S}_{i} = 95$? $\mathcal{S}_{a} = 75$?? $\mathcal{S}_{b} = 1/8$? The gracing. 18 II 69. Typean beautreage писано, по покачеро mohashede usino. andred undy the Tomonten & bab xapays by

Mendeleev's Table Today

			R 114 Fleroviu	mb	a se	Deres	A.	ASOPATOPHA	NAEPHIA PE	ARTIN I				1		Pr P	C III
				S			m	m									1
			0	Dubna						NUN				and the second s	~		
1	IIE	ерис	оди	чес	кая	таб	ЛИГ	ца э	лем	ент	ГОВ			AND C		C Aut	18
кород 1 _Б 13.59841 6,0869 0.794 -259,31 (подел -252,37	2						<u>ұ.и.</u>	Me	нде	лее	ва	13	14	15	16	17	Гелий 2 Не 23 4,0026 Helium
nnii 3 N 3.29173 534 41 150,54 11um 1742	Бериллий 4 2/ Ве ^{9,32243} 18:4 9,01218 12:57 Beryllium 2471	D.I.	Mer	idele	ev's	Perio	odic ⁻	Table	e of E	leme	ents	Бор 5 25° В 329838 10,811 3075 Вогов 4000	Углерод 6 27 С 10,760 12,011 Сатбол 15,00,857	Asor 7 26' N (4,5214 125% 14,0067 2 356 Nitrogen 195.79	Кислород 8 0 130 15,9994 -218 0xygen 182	т Фтор 9 ₂₉ 18 F ^{15,2596} 18,9984 стядо 19,100 в.2	неон 10 Ne аз 20,1797 л. Neon -2
рий 11 ж а 3.13907 319 319 319 319 319 319 319 319 319 319	Магний 12 ас Mg 7,64621 1728 24,3050 658 Маgnesium 1008	3	4	5	6	7	8	9	10	11	12	Алюминий 13 _с Al (985)7 26,981539 (99,5) Aluminum (15)5	Кремний 14 ₂₅ Si 250 сл. 28,0855 14 ± Silicon 3265	Фосфор 15 36 Р (1248469 30,97376 4-18 Phosphorus 77	tepa 16 S 32,066 015, Sulfur 44	μ ² X.nop 17 23 14 Cl 12,96784 32,27 51 35,4527 16,5 54,07 6 Chlorine -34,07 -34,07	Аргов 18 Аг 53 39,948 Агдоп 48
ий 19 ₄₅ 1,5/066 380 9903 (5,38 assium 7,59	Кальций 20 ₄₅ Са 510 40,078 812 Саксит 294	Скандий 21 _{30⁴67} Sc ^{6,30144} 2889 44,95591 ¹⁵⁴¹ Scandium 2859	Титан 22 36% Ті 680 47,68 68 Тіталіцт 2287	Ванадий 23 _{33.6} V 6.469 5900 50,9415 1910 Vanadium 346	xpox 24 38.16 Cr 53644 7200 51,9961 1506 Chromium 2870	Марганец, 25 Мп (4040) 54,93805 (346 Manganese (2061	железо 26 Fe 2580 55,847 153 Iron 256	Ku6ansr 27 50,9320 14% Cobalt 282	накель 28 30% Ni 58,6934 250 Nickel 2913	медь 29 Сц 3/36 63,546 04,6 Соррег 256	цинк 30 _{36'15} Zn ^{8,3565} ^{65,39} 4 9,11 Zinc 967	Галлий 31 ₄₆ Ga 50000 69,723 59,76 Gallium 3,354	Германий 32 4, Ge 75,00 72,61 098,25 Germanium 232	Мышьяк 33 47 As 25,000 74,92159 Arsenic Crit 6.4	Селен 34 Se 45 78,96 2 Selenium 9	р Бром 35 _{4,7} 50 Вг ^{11,81,81} 7 9,904 7,2 8 вготіле ^{90,79}	Крантон 3 Кг 35 83,80 6 Кгурton -0
Aguit 37 50 0 -172137 1543 1678 29,33 1678 588	Orposequit 3.8 3.1 Sr 5.20451 2.978 87,62 377 5.170	итерий 39 ₆₀₅₈ Y 5277 886,90585 Vilrium	Πυγκουστά 40 Zr \$(000) 91,224 \$(000) Zirkonium \$(000)	Hunduti 41 Mb 6/985 92,90638 497 Niobium 71	Молибден 42 ₁₈₅₆ МО 19600 95,94 лец Мојурдскит 239	Technetium 43	Pyresunii 44 Ru 2,4060 101,07 224 Ruthenium 1250	Pognii 45 Rh 12456 102,90550 12400 Rhodium 2655	паклядий 46.3. Pd ²⁵⁴⁶ 106,42 ²⁵⁶⁶ Palladium ²⁵⁶⁶	Геребра 47 40% Ag 1500 107,8682 216 Silver 216	Кадиний 48 ₁₆₇₅ . Cd (1000) 112,411 (100) Cadmium (100)	надий 49 ₃ In 5,3506 114,818 1556 Indium 3072	0.0000 50,, Sn 7.50 118,710 20,80 Tin 200	Сурьяна 51 ус Sb 884 121,757 610.61 Алтітнопу 239	Теолур 52 Те %	r Hoat 53 6 I 102.5125 126,90447 112.7 10 126 1842	KCENON 54 Xe 2.1 131,29 Xenon 40
69 55 6 5 1979 190543 23.44 190543 67:	Bapmin 56 61 Ba 32.1 ml 35.0 ml 137,327 727 15.7 ml Barium 15.9 ml 15.9 ml	Лантан 57 _{5/68} La 55750 138,9055 620 Lanthanum 3454	Гафини 72 _{8.8} Нf 485397 178,49 734 Наfnium 6697	Tauraa 73 5/6 Ta 7/8 180,9479 30/7 Tantalum 5/5	Вальфрам 74 ₇₆ W 1939 183,84 421 Tungsten 555	Рений 75 Re 2536 186,207 1186 Rhenium 2596	Осний 76 ₅₀ 5, ОS 27451 190,23 365 Озтісня 2012	Ирадий 77 _{Мб} Ir 2201 192,22 246 Iridium05	Платина 78 _{51%} Рt 300 195,08 17584 Platinum 7927	30.0070 79 Au 50.3 196,96654 0.4 Gold 2.5	Ртуть 80 Нд 18:4336 200,59 38:33 Метсигу 35:6,75	Taounii 81 _{se} Tl Niegy 204,3833 324 Thallium 423	Cannen 82.67 Pb 7/1000 207,2 327.45 Lead 1749	BECNYT 83 ap Bi 7289 9306 208,98037 271.1 Bismuth 1564	Полоний 84. Ро ⁵⁴¹⁵ [209] 2 Polonium ²	Actar 85 (4) At 920 10 At 920 11 At 920 12 Astatine 920	Радон 86 Rn 307 [222] Radon
инций В7 ₁₅ (1003 - 3] 27	Радий 88 <u>Ra</u> 327642 226,025 ти Вабиат 14	Актикей 89 9/75 АС 5/7 [227] 1079 Астівіцт 3079	Резерфордий 104 Rf ad [261] Butherfordium	Дубний 105 Db ⁶⁶ [262] Биријан	Сиборгий 106 Sg 96 [266] Seobargium	Борий 107 Bh ^{64°} [262] Воргіцт	Хассий 108 На (* [269] Назвіцт	Мейтнерий 109 Мt 44 [268] Мейлегіит	Japonuragran 110 Ds (d [269] Darmstadtium	Рентсений 111 Rg ^{сг} [272] Roentgenium	Консренкий 112 Cn [285] Copernicium	Nihonium	Флеровий 114 Fl Flerovium	Mocxonna 115 MC Moscovium	ливерморий 11 LV Livermorium	Tennessine	Oranecon 118 Og Oganesson

Актиноиды Actinoides

H - curiado / symbol 1.00794 - attorimes inaccia / atomic mass 131 - saercponana kondynypaujus / electron configuration 13.39844 - Sin foremusan konkvaujun, 36 / Jati ionization potential, eV 0.0889 - nonconcis, kr. Vr. 4 density, kg/ m²¹ - 252.37 - transparypa nasakenike, 9C / melting temperature, 9C - - 252.37 - transparypa santeaunie, 9C / boling temperature, 9C

10 of 18 elements discovered during last 60 years were first synthesized in Dubna

May 2012: Official approval of the name *Flerovium* for element *114* and the name *Livermorium* for element *116*

30th December 2015:

Approval of the discovery of new elements 113, 115, 117, and 118

- element 113: RIKEN (Japan)
- elements 115 and 117: JINR (Dubna) LLNL (USA) ORNL (USA) collaboration
- element 118: JINR (Dubna) LLNL collaboration.

28th November 2016:

IUPAC formally approved names and symbols of new elements:

Nihonium(Nh) for element 113,Moscovium(Mc) for element 115,Tennessine(Ts) for element 117, andOganesson(Og) for element 118.

Флеровий 114	Московий 115	Ливерморий 116	Теннессин 117	Оганесон 118		
Fl	Мс	Lv	Ts	Og		
Flerovium	Moscovium	Livermorium	Tennessine	Oganesson		

All these elements were synthesized for the first time at the U-400 accelerator complex of the Flerov Laboratory of Nuclear Reactions of JINR.

International Union of Pure and Applied Chemistry

Chart of Nuclei

Isotope reactors

HFIR, ORNL, Oak Ridge, USA, 85 MW

CM-3, IAR, Dimitrovgrad, RF, 100 MW

22 mg of ²⁴⁹Bk have been produced in HIFR ORNL

 $Bk(NO_3)_3Product$

Superconducting 18 GHz ECR ion sources

DECRIS-SC1

DECRIS-SC2

Synthesis of Superheavy Elements (U-400)

GREAT PROGRESS

in Synthesis of Superheavy Nuclei

Neutron number

SuperHeavy Elements (SHE) Factory

- Completion of the SHE Factory building and its engineering systems (2016 – June 2017)
- Assembling the DC-280 cyclotron. Installation of new Gas-Filled Recoil Separator. (September 2016 – December 2017)
- First experiments (2018)

DC-280 cyclotron: main magnet assembling

15 September 2016: started

18 October 2016

18 January 2017

Magnet of DC280 cyclotron is assembled and ready for testing!

Study of exotic nuclei close and beyond the nucleon stability limits

ACCULLINA-2

New separator for study light exotic nuclei and reactions with them

2015/16: commissioning tests, 1st runs
2016: zero angle spectrometer
2018/19: unique cryogenic tritium target

Directions of the future researches:

- structure of light exotic nuclei
- reactions with exotic nuclei
- study of rare decay modes

Applied research

Nano Laboratory

Production of track membranes (IC-100)

Accelerators-born nanostructures

new composite materials:

- extended layers adhesion strength
- increased thermal resistance
- flexible printed circuit boards

Polymer composites produced with the use of track membranes nanotubes nanowires

Radiation Hardness Tests For Electronic Components

Development of radiation-proofed electronic components is the first priority task of the modern high-class electronic industry.

Long-distance space flights, long-lived sputniks, etc. are extremely critical to the quality of electronic chips.

Welcome to DUBNA!

