Baikal GVD experiment

Rastislav Dvornický on behalf of the Baikal collaboration, DLNP, JINR, Dubna, Russia & Comenius University, Bratislava, Slovakia

Collaboration: 9 institutions

- 1. Institute for Nuclear Research, Moscow, Russia.
- 2. Joint Institute for Nuclear Research, Dubna, Russia.
- 3. Irkutsk State University, Irkutsk, Russia.
- 4. Skobeltsyn Institute of Nuclear Physics MSU, Moscow, Russia.
- 5. Nizhny Novgorod State Technical University, Russia.
- 6. St.Petersburg State Marine University, Russia.
- 7. EvoLogics Gmbh., Berlin, Germany.
- 8. Institute of Experimental and Applied Physics, Czech Technical University, Prague, Czech Republic.
- 9. Comenius University, Bratislava, Slovakia.

Other associated institutions:

Krakow University, PolandUniversity of Bucharest, Romania

Cosmic rays:

Energies and rates of the cosmic-ray particles

Galactic sources: TeV – EeV ? SNR, micro-quasars, pulsars

Extra-Galactic sources: EeV–PeV... AGN, GRB,...

Energy spectrum and mass composition ⁽²⁾ Sources location ?

Charged cosmic rays vs. γ rays vs. neutrinos

Neutrinos – one of the 3 messengers

Neutrinos – one of the 3 messengers

M. Markov (1960): We propose to install detectors deep in a lake or in the sea and to determine the direction of charged particles with the help of Cherenkov radiation.

Detection Principle – M. Markov 1960

Flux From local sources, diffuse flux Detection modes muons, cascades

Environment

properties absorption, scattering, light background – K⁴⁰, bioluminescence

Background

downward going atm. muons, atm. neutrinos

Cherenkov light

•Charged particle travelling faster than the speed of light in a particular environment radiates Cherenkov light

• Pale blue light

• Effect known for ultrasonic airplanes

Detection principle

$$v_{l} + N \rightarrow^{CC} \begin{cases} e^{-} + X \rightarrow cascades \\ \tau^{-} + X \rightarrow cascades \\ \mu^{-} + X \rightarrow track + cascades \end{cases}$$

•Cherenkov radiation is detected by an array of photo-sensors

$$v_l + N \rightarrow^{NC} v_l + cascade$$

• Optical Module

Downward going muon

Upward going neutrino

Background muon bundle

High-energy cascade

Neutrino cross sections

Muon energy loss and range in water

Muon Detection Mode

 μ —Ch. light e^+e

Brems&photonucl.

 $N_{ch} = n_\mu (1 + 0.6E(TeV))$

- High angular resolution ~0.1°- 1° (depends on visible track length)
- Enlarged effective volume (water/ice & bedrock for up-going v_µ)
- Emits strongly in the Cherenkov angle

Baikal GVD -Gigaton Volume Detector

Objectives:

- km3-scale 3D-array of photo sensors
- flexible structure allowing an upgrade and/or a rearrangement of the main building blocks (clusters)
- high sensitivity and resolution of neutrino energy, direction and flavor content

Central Physics Goals:

- Investigate Galactic and Extragalactic neutrino "point sources" in energy range E > TeV
- Diffuse neutrino flux energy spectrum, local and global anisotropy, flavor content
- Transient sources (GRB, ...)
- Dark matter indirect search
- Exotic particles monopoles, Q-balls, ...

Water properties

0

2016-05

2016-07

2016-08

2016-10

- Absorption length: ~ 22-24 m
- Scattering length: $L_s \sim 30-50 \text{ m}$ $L_{eff} = L_s /(1 - \langle \cos \theta \rangle) \sim 300-500 \text{ m}$
- Strongly anisotropic phase function: <cosθ> ~ 0.9

• Moderately low background in fresh water:

15 – 40 kHz (R7081HQE) absence of high luminosity bursts from biology and K⁴⁰ background.

2016-12

M No. 3

$E = 107 \text{ TeV}, \ \theta = 56.6^{\circ}, \rho = 68 \text{ m}, \ z = -59 \text{ m}$

Cascade: E=157 TeV, $\theta = 57^{\circ}$, $\varphi = 249^{\circ}$ x=-25m, y=-37m, z=11m, ρ =44m

Events from above event selections with energy cut.

Site properties – 106 km КБЖД

120 m

15 m–DAQ center

1 366 m – from surface to bottom

525 m - height

Location: 104°25' E, 51°46' N

Site properties – 106 km КБЖД

Depth – 1360 m; Flat the lake bed at >3 km from the shore – allows > 250 km3 Instrumented Water Volume!

Distance is shorter during the winter period

Infrastructure

Living quarters

20

Shore station

Upgrade: control center in a new cabin

Winter expedition

Making ice holes

Dismantling the string

String attachment

Deployment of the string

Tea break to warm up a little bit

Cables to the shore station

The end of the winter expedition

The end of the winter expedition

Old NT200: volume ~ 0.0001 km³

Third cluster April 2018 All 3 clusters taking data

~ 600 m

Stages of deployment of the Baikal-GVD

Configuration	2015	2016	2017	2018	
The number	192 (8str×24)	288 (8str×36)	576	864	
of OMs					
Geometric	Ø80m×345m	Ø120m×525m	2ר120m×525m	3ר120m×525m	
sizes					
Eff. Vol.	0.03 km ³	0.05 km ³	0.1 km ³	0.15 km ³	
(E>100TeV)					

Timeline GVD 1

Cumulative number of clusters vs. year

Year	2016	2017	2018	2019	2020	2021
No. of clusters	1	2	4	6	8	10 2592
No. of OM	200	570	1152	1720 E	2304	2592
		Recent numbers	- 3	Э	1	9

Deployment plan for expedition 2019

m

Baikal, Mediterranean Sea, South Pole

Thank You for your attention

