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Why Neutrons?

Neutrons have No Charge!

e Highly penetrating
e Nondestructive

e Can be used in extremes

Neutrons have a Magnetic Moment!
e Magnetic structure
e Fluctuations

e Magnetic materials

Neutrons have Spin!
¢ Polarized beams
e Atomic orientation

e Coherent and incoherent scattering

The Energies of neutrons are similar to the
energies of elementary excitations!

e Molecular Vibrations and Lattice modes

e Magnetic excitations

The Wavelengths of neutrons are similar to
atomic spacing!

¢ Sensitive to structure
e Gathers information from 101°to 107 m

e Crystal structures and atomic spacings

Neutrons probe Nuclei!
e Light atom sensitive

 Sensitive to isotopic substitution
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Advantages of neu?rons over X-rays

* You can easily work in extreme sample environments H,T,P,...) e.g.*He cryostat
(Shull & Wollan) and penetrate into dense samples

« The magnetic and nuclear cross-sections are comparable, nuclear cross-sections are
similar across the periodic table

Neutrons

0 00 o0
22000 > 90

« Sensitivity to a wide a range of properties, both magnetic and structural 4
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Neutrons vs. X-rays!

X-rays
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Chatterji, Neutron Scattering from Magnetic Materials (2006)

Neutrons allow easy access to atoms that are usually unseen in X-ray Scattering
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Neutron - wave and par'hcle

[ cold resonance }

Wavelength, Angstro
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matter and nuclei

natGd (n’ ,Y)

152Gd - 0.20%
200 ~ 154Gd - 2.18%
155Gd - 14.80%
156Gd - 20.47%

150 - 157Gd - 15.65%
158Gd - 24.84%
g 160G(d - 21.86%
3 100 - Sample:
° m,=172.8¢g
! size: 11.2 x 14.5
1 e
S0 -+ 1 1 pi1.064039
k d IREN, Dubna
o *l f=25Hz
200 22: |, =2A; t,=100ns
L=58.6m

Lecture at MSU October 8 2013
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* I Detector
\2
It Collimator En[EV]=5227,073.£ L[m]
(t+1t)lus],
72.2985- L[m])
E eV |= ]
- el
AE, _ Z_dt 2+ Z_dL i AEn[eV]=2.8'1O_2't—['us]-Er;%
AN L[

dtmod [,uS] ~1.6- En_% ~50 ns at 1 keV; 500 ns at 10 eV
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Brief History of IBR
reactors

The first IBR was created chiefly by physicists from
IPPE (Obninsk) with the participation of specialists
from FLNP JINR under the direction of I.M.Frank.

To simplify the design of a unique reactor constructed
for the first time in the world, the IBR average
power was chosen to be rather small 1 kW (but
instantaneous power in pulse reached 5 MW). Later on
the possibility to raise the reactor average power up
to 6 kW with an increase in the consumption of
cooling air was substantiated, and since 1964 the
reactor worked at a power from 2 to 6 kW.

In general, rather long pulse of the reactor (50 us)
was more adequate to the tasks of condensed matter
physics. To reduce pulse duration, at the suggestion
of F.L.Shapiro since 1965 the first IBR started to be
used in a neutron pulse multiplication mode of a
neutron-producing target of the electron accelerator-
microtron. With the start-up of the pulsed booster)
the neutron pulse length reduced to 3 ps

CHINA INSTITUTE OF ATOMIC ENERGY (CIAE), June 4, 2016
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f)  Brief Hls'ror'y of IBR
% 2 reactors cont.

« The first IBR stopped its operation in August 1968.
It is particularly remarkable that the last experiment
on this reactor was a well-known experiment on the
first observation of ultracold neutrons carried out in a
rare pulse mode. On June 10, 1969 an advanced
analogue of the first IBR - IBR-30 was put into
operation. An increase in power was achieved by
changing the design of plutonium fuel elements and by
infroducing two uranium inserts (modulators of
reactivity) instead of one in the steel disk.

« The operation in a booster mode (IBR-30 was used in
the reactor and booster modes alternately up to
1986, when its operation in the reactor mode was
stopped) was carried out with the resonant linear
accelerator LUE-40 as an injector with an energy of
accelerated electrons of 44 MeV and a pulse current
of 0.2 A. An average power in the booster mode was
10 kW at a fast neutron pulse halfwidth of 4 pus. High
luminosity of the spectrometer at IBR-30 made it
possible to open up a number of entirely new areas in

FINSTITUTdeledi” reseairch’-and’ condensed matter physics.




{ Neutron Physics mp
WA M UM Opanka e ™ R

Brief History of IBR
reactor's cont.

In 1963 preliminary design works were started to substantiate the
possibility to create a much more powerful IBR, which in its neutron
characteristics for investigations by slow neutron scattering methods would
compare well with 50-100 megawatt stationary reactors (HFR in ILL,
Grenoble, SM-2 in RIAR, Dmitrovgrad, PIK in PNPI RAS, Gatchina). In
JINR a new reactor with a design power of 4 MW under the name IBR-2
was constructed by 1977 with the participation of NIKIET (A.N.Dollezhal
Research and Development Institute of Power Engineering), SSDI (State
Specialized Design Institute), VNIINM (A.A.Bochvar All-Russian Research
Institute of Inorganic Materials) and other institutes and organizations of
the USSR and JINR Member States.

« The physical start-up was in 1978 and the official operation began in April
1984. Later on it was decided to restrict the average power to 2
megawatts to ensure the maximum possible nuclear safety and reliability of
the facility, and the pulse duration turned out to be 216 ps instead of
design value of 90 ps. But even with these parameters IBR-2 was and still
remains to be one of the most effective pulsed sources of slow neutrons
for condensed matter investigations. The requirement to obtain high
neutron fluxes at short pulse duration also led to the necessity to create a
compact zone with high specific heat release and short neutron lifetime.
The reactor core of plutonium oxide with sodium cooling was chosen. The
sodium cooling system has been functioning successfully and uninterruptedly
since its startup in 1981 to the present day both during the reactor
cycles and in shutdown periods.

IN\ INSTITUTE OF ATOMIC ENERGY (CIAE), June 4, 2016
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Amazing Software, Amazing Life . m m? m 2
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Core 500 ms Burst power, MW 1850
Stationary Fuel Pu0:
reflector

p ms
Mumber of fuel assemblies B3
Maximum burnup, % 9
. Pulse repetition rate, Hz 5:.10
200 l"'s ‘..
_— Pulse half-width, ps:
N fast neutrons 240
220;3 « thermal neutrons 320
Rotation rate, rev,/min:
main reflector BOD
auxiliary reflector 300
Water moderator MMR and AMR material nickel + steel
MR service life, hours 55000
Background, % 75

Main movable reflector Thermal neutron flux density from the

surface of the moderator™*:
- time average ~10® n/cm?-s
- burst maximum ~10"® n/cm?-s

* AL the maan povwer 2 RIW

e ** More precise data on the hermal neutron fiux density after the modemaation will be svalable when the: tor
Awdliary movabIRIIRTATUTE oF ATOMIC ENERGY ( . . -

04.06.2018 CIAE), June 4, 2Q&fes at tut powes.
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Pulsed transformer
. Electron gun

1" accelerating section

Scheme of a

neW 2% Klystron
configuration Of zmse

the accelerator

2 accelerating section

Magnetic spectrometer

ol - 11- 926 722)
Peesrpla?
GNP 220w

T

—v— neutron flux density Jan 23 2009 [
—_— neutron flux density Mar 19 2009 |1
—I— neutron flux density Apr 22 2009 3
—D— neutron flux density May 21 2009 (1
—O— neutron flux density June 30 2009 ]
—— neutron flux density Dec 19 2009 ‘
—=— neutron flux density Dec 20 2016 |1

Neutron flux density n/cm*/c/eV

Energy, eV

counts

579 eV
| %Cu

v

311ey 1735eV

-

channel

Spectra of neutron flux density from IREN
obtained during the development of the facility

TOF spectrum, obtained from measurement with
ancient coins from the Phanagoria's treasure
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Fr'cmk Laboratory of Neutron Physi

556 staff personnel, 111 from non-Russia, average age 47 years;
« 24.362 M$ - 2018 annual budget, 45% - for the research;

» Two scientific directions:
— Neutron nuclear physics;
— Condensed matter physics;

 Methodic:

» Basic facilities:
— IBR-2M:
— IREN:

» About 250 papers published annually;
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Staff personnel, age
FLNP age distribution
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Condensed matter physics

* Physics and Chemistry of Novel
Functional Materials:

* Physics of Nanosystems and Nanoscale
Phenomena;

* Physics and Chemistry of Complex Liquids
and Polymers:

* Molecular Biology and Pharmacology:
* Materials and Engineering Sciences:

* Neutron Radiography and Tomography:

04.06.2018 CHINA INSTITUTE OF ATOMIC ENERGY (CIAE), June 4, 2016
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Novel type of the charge ordering state in iron oxide Fe,O,
iInvolving competing dimer and trimer formation

Iron oxides: ¢

a
« important role in the formation of magnetic and other ’
physical properties of the Earth, Y
» find a wide range of technological applications
Previously known: Fe;O,, Fe,O,, FeO \ o p
© v -] I Fe
2500, R O1
S 2000} res
£ / a B O1
; 1500 - - !) - "\l =
2 1000 ! N W ’ . - : '
2 ol o I Formation mechanism of the
ofrmi oy sl oy dimeric and trimeric states
b) 2 3 4 5 6 71
e Ty : :
B '} * anew iron oxide, Fe,O;, was
e R [T synthesized under the
—0p . .
PRI 3 combined effect of high
il ,'r' 1 [ pressures and temperatures;
o™ & ] 8 * new type of charge-ordering
J‘ | =&

a e | state was revealed.

d) )

Crystal structure of Fe,O¢ (a), neutron diffraction patterns, S.V. Ovsyannikov,.., D.P. Kozlenko,
measured at different temperatures and processed by the Rietveld et al., Nature Chemistry (2016)
method (b), magnetic structures at T =150 K (¢), and 7 =10 K (d).

(b). mag © @ Impact Factor: 27.893
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Diffraction Studies of Li-Based Accumulators

10Ah cell, LFPV cathode
FePO.: Vo5 IR MO0 00NN 1110 0L 00 ) (. | :
LiFePO,:V ,ors INEMMENIITII | \nu I || |“ 110 N S Fotential (V)

Graphite IIITITT | | 24 28 32 36 4
i ¢ T ) R 4 Y 5

T —

{_,, e —

Real-time  monitoring of  transition
processes during charge-discharge cycles
revealed 10% increase of LiC, phase in
anode when cathode was doped with
vanadium oxide, which correlates with

better electrochemical properties.
I.A.Bol?ﬁi?éo%?lét al., J. Power Sources (2014)(?HINA INSTITUTE OF ATOMIC ENERGY (CIAE), June 4, 2016
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!"' :'glI!N;UIC':.SE Residual stress in surveillance Charpy specimens,
(sl recovered by electron (EBW) and laser (LBW) beam welding

Collaboration: Institute of Electronics of BAS(Sofia, Bulgaria) o0

FLNP JINR (Dubna, Russia), NECSA Ltd. (Pretoria, South Africa)

by Gizo Bokuchava
ues: submitted to Nuclea

Microstrain
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Stress, MPa
S

Stress, MPa

Electronbeam welding

T . T :ql-m T
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500 1000 _ 1500 2000 _ |
Typical neutron diffraction spectra at weld seam locations during x-scan

04.06.2018 CHINA INSTITUTE OF ATOMIC ENERGY (CIAE), June 4, 2016
bulgare des sciences (2014).

5 Neutron diffrac]tlion (211) reflection broadening
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¥ Helical structure of fibril-type amyloidal aggre
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Alzheimer

- disease
¥ )
» j\‘

Motivation

Formation of amyloidal
4 aggregates are associated
‘W~,, With many aged-related
| illnesses (e.g. Alzheimer
diseases)

gatesh Physics
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Model of amyloid
fllament structure from XRD

11.5nm, 24 B-strands

Structure analysis of model lysozyme (hen egg) amyloidal solutions

10 5

0,14

I(q), cm™

0,01 -

Cylindric SANS
symmetry
i = D100
« D90
D80
Helical
— symmetry

1E-3

04.06.2018

M.V.Avdeev, et al, J

CHINA INSTITUTE OF ATOMIC ENERGY (CIAE), June 4, 2016

Onm

. Appl. Cryst. (2013)
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Neutron radiography and tomography at the % ¥ : .

Beam #14 are used to study archeological objects,
especially metallic artifacts

04.06.2018 CHINA INSTIT : ) " ’ S. Kichanov
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CHINA INSTITUTE OF ATOMIC ENERGY (CIAE), June 4, 2016
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NEUTRON LIFE TIME MEASUREMENTS
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Ultracold neutrons and
interaction of waves
with moving matt ™ UCNspeciometer with Fabry-Perot -

A.l. Frank

distance between them  mg=1.02 neV
FLNP of JINR, Dubna, Russia
frank@nf.jinr.ru

ISINN 25, 22-26 May, 2017

Transmission
@
———
f
- 5
- i
.
1
| [
I\‘::1—"--..___
: =
L. 2
T
e >

Detector

A, Frank, |SINN 25, Dubna, 23 May 2017

A. Frank. ISINN 25, Dubna, 23 May 2017



C N S i
FInP

i A

Phase m -grating

ﬁq) = k(ll - l)h = 'ﬂ:. I = 0.14 mkm

AE=hQ AE=n02 .
, ; Q= 1nfN
where N is number of grooves

- E

A, Frank, IZINM 26, Dubna, 23 May 2017

Experimental realization - rotating grating "ﬂ"

fg)fv@fﬂeuml’hyslcs
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First experimental results *H"

Angular period of grating 0.3325mrad (20u at the middle diameter)

E—

Monochromator 5 ,’ %
- ¢ X
—— ] 4 J ¥
.- a i
‘3 !! ¥
t !' 3 T T - T ”v, T H T ]
. 4 >
grating 2] ST 4 G0k
o R : M,
' hdkatdsy 2as] Lo ,*" £ 008 et
Analyzen i B\ R Nptlag (2.1 14 2 W0 e e,
Ty — e £ 3 TR P I
. N ] : l"!! e
| 211 / * e foty e ooy
; L] P 19 .f vy !“"
E : 1 > » ¥ aerasroore ""‘
¥ e it “83 PR PR SR s
' 4 v 't *’ I -
o ¥ | xxp . x ~ SNz
.5 o e Bgat S \
Detector T "
 EMT PR SRR S i RN W SR D | R YA R T
Diztance between the Biers, cm 0 ﬁnnzn‘l -r;;. v‘l‘m Aterx ;én-

[z, = 0-383(8)

Splitting of the spectrum

AL Frank et al ILL annual report 2001
Phys.Letr. 4 311 (2003) 6
A. Frank. ISINN 25, Dubna. 23 May 2017

LA Frank et al. Jelp Lott, 81 (2005) 427

18
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G.V. Kulin, AL Frank, S.V. Goryunovet al.,
NIM A, 869(2016) 67

A Frank, ISINN 256, Dubna, 22 May 2017

— ‘y‘; _ TOF Fourier spectrometer (2014-2016

Fenllsoiomnyof Neutron Physics
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Angular period of grating
0.0665mrad
(du ai the middle diameter)

KA. Bushuev, AL Frank, G.V. Kulin. JETP, 122, 32 (2016)
G.K Kulin, AL Frark, S.V. Goryunov, ¢t al. Phys. Rev.A 93033606, (2016)

A. Frank. ISINN 25, Cubna, 23 May 2017

Vi)
" - .

(ot i

~Eod TOF Fourier spectrometry and comparing obtained spectra "ﬂ"
with dynamic theory of neutron diffraction
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Experiments with tagged neutrons

|

All events

3000|

2000|

n; G — detector of neutron or
gamma quanta registration

1.8

1.6

-
[

Anisotropy

—

o
=3

0.6

o  Anderson et al
o Spaargaren et al
Benveniste et al
¢+ Stewartetal
Balygin et al
—@— Our data
ENDF/B-VII.1

0.4

.
LA
:
o
o

23.03.2018

0
cos(8)

1000

[emwas=ooSoo oo ol e s h NN PR PR |
ﬁOD 2500 3000 3500 4000 4500 5000 5500 G000
Enargy (MaV)

2500
2000 \
. 1500 :
. 1000 L

500

'&00 2500 3000 3500 4000 4500 5000 5500 GO

Energy (MaV)

3000

2000]

300

250|

N . 200

o~y coincidence
150

100

50|

2000 2500 3000 3500 4000 4500 5000 5500 €000

single
escape

~

Enengy (MaV)

160

140
) 120
! o0
80
80
40

20

single
escape

N\

&00 2500 3000 3500 4000 4500 5000 5500 6000

Energy (MeV)

w~1l+a-cos’@d—b-cos*@

a=1.58+0.04
b=1.22 +0.05

VBLHEP Seminar, 23.03.2018

TANGRA Collaboration

5000,

4000]

1000]

2%03 2500 3000 3500 4000 4500 5000 5500 6000

Energy MeV)
3001~
single
250~ escape 4.4 MeV

2%[0 2500 3000 3500 4000 4500 5000 5500 6000

N e

Energy (MeV)




JOINT INSTIT 1993 Biomonitoring... ey of Neutron Physés T4

P4y FOR NUCLEAR niocmanun ik C o s UM Opanka

M.V. Frontasyeva, V.M. Nazarov and E. Steinnes. Mosses as monitors of

heavy metal deposition: Comparison of different multi-element
analytical techniques. In R.J. Allan and J.O. Nriagu, eds., Heavy Metals
in the Environment, Vol.2, pp. 17-20. CEP Consultants, Edinburgh 1993.

13/10/2016 35
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B “ Mosses provide a complementary
5 - 5 T _ method to assess spatial patterns
£ 72% = - and temporal trends of atmospheric
"1 12% e heavy metal deposition:
U Carpet forming mosses receive
: : trace elements and nutrients mainly
. i from the atmosphere.
? \/_' E 2 \/o\.
o 20 i U Inrecent years, the lowest
- 0 = . -
. e oges] concentrations of heavy metals in
Year Year mosses were found generally in
. . northern Europe and the highest
. \ concentrations in Belgium and
g T %s eastern Europe .
’ - - U Europe-wide the concentration in
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Development of the neutron and gamma detectors for space crafts

* Cooperation of two JINR Labs with Russian Space Research Institute since 1997;

* FLNP and LRB responsibility are: conceptual design, physical and numerical mo
deling, physical calibrations;

Lunar Exploration Neutron Detector NP
(LEND) at LRO

Suppressed Neutron .

Region at Cabeus . o\ countisec
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<nted for the segment of southern polar region with impact crater Cabeus (left)

acce «cron Detector (LEND, right). Lower counting rate (blue) represents the enhancement of

Hydr ,<r of the surface. Gray shadowing corresponds to the surface relief in accordance to LOLA
meas\ ~ent Permanently Shadowed Regions (PSR), as derived from the altimetry data of Japanese Kaguya
missio

Accc .nary analysis of LEND data, PSRs are not consistent with detected Supp d Neutron Regi (SNRs) on
the Mo content of Hydrogen. However, some PSRs are positioned inside SNRs, like one at the Cabeus crater, which is
found to .< of the strongest signature of subsurface Hydrogen at the South pole.

Instrur. ...c LEND was developed in the Institute for Space Research (Moscow), as the contribution of Federal Space Agency of Russia
to the NASA’'s Lunar Reconnaissance Orbiter mission.



& ror we. Dynamic Albedo of Neutrons (DAN) Russian i
| detector onboard of the Curiosity Rover r,. ]'JL L

Pulsed neutron Logging: idea belongs to
- G.N.Flerov. Fast neutrons from generator
penetrates into the soil and moderated. Time
profile of the slow neutron counter located
above the soil drastically depends on the
hydrogen content in the soil.

: Pt ‘," f ; AREE ; e At
- 2, o ' Dunamic Albedo of Neutrons (DAN)-at Mars: C’ur:asrrg‘__Mos.-.‘uaq
FLNP and LRB of JINR are collaborating with Russian T— Dry soil A
Space Research Institute since 1997. DAN device was ‘ Water ice 50% vol. ontributed by the Federal 5
proposed in 2003 as one of the scientificinstruments - s s

onboard of the Mars Science Laboratory and in the
beginning of 2004 after non- advocatmg review was

1zaccepted by NASA.
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DAN flight unit onbonrd the NASA Mars rover Cumosn

Tagged Neutrons Technique First Testing “
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* Detectors;
 Experiments Automation;
- Sample Environment;

* Cold Moderators;

« Software & Networking:;
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International School for Young Scientist and Students «Instruments
and Methods of Experimental Nuclear' Physics»
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FLNP Future

 Short term perspectives:

* Development and upgrade of the IBR-2 instruments. Already now we

have examples of more than 10-fold increase in efficiency:
« Completion of the CM complex;
« Startup of the IREN source at designed parameters;

* Long term perspectives - new accelerator based neutron
source in order to replace IBR-2 after the end of it's

lifetime;
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