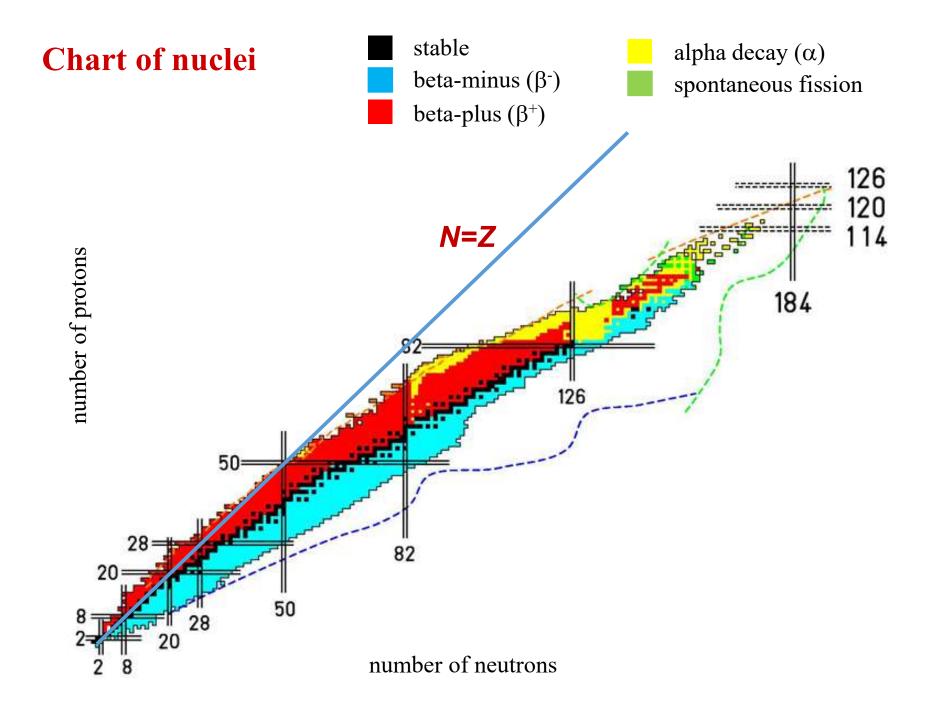
Flerov Laboratory of Nuclear Reactions

Alexander Karpov

FLNR's Basic Directions of Research

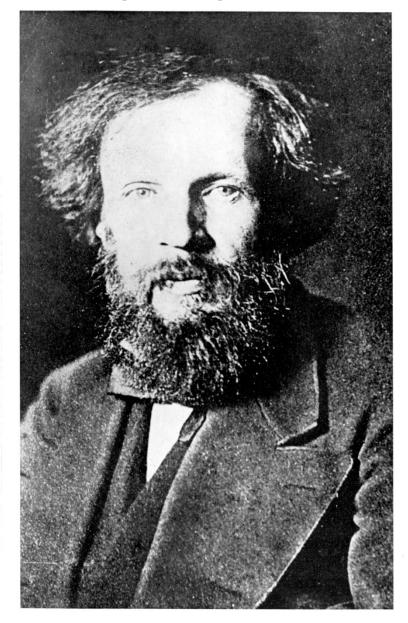
1. Heavy and superheavy nuclei:

- synthesis and study of properties of superheavy elements;
- chemistry of new elements;
- fusion-fission and multi-nucleon transfer reactions;
- nuclear-, mass-, & laser-spectrometry of SH nuclei.


2. Light exotic nuclei:

- properties and structure of light exotic nuclei;
- reactions with exotic nuclei.

3. Radiation effects and physical groundwork of nanotechnology.


4. Accelerator technologies.

Staff : ~450 people

Mendeleev's Table (1869)

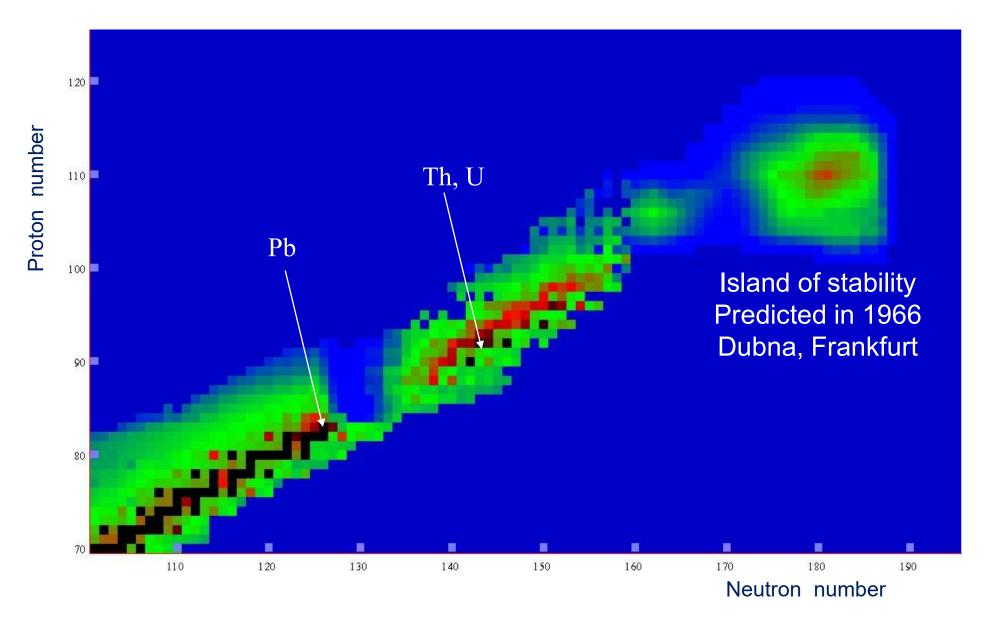
Onbuns are mainty success maby E, constantilles un arracer varet cher a gaden Ge, D. Mendeunete. $\begin{array}{c} \begin{array}{c} \mathcal{N}_{i}=\mathcal{G}=5\mathcal{G}, & \mathcal{P}_{i}=1/6\mathcal{G}, & \mathcal{C}\mathcal{F}\mathcal{G}\mathcal{G}\mathcal{G}, \\ \mathcal{N}_{i}=\mathcal{G}=5\mathcal{G}, & \mathcal{P}_{i}=1/6\mathcal{G}, & \mathcal{C}\mathcal{F}\mathcal{G}\mathcal{G}\mathcal{G}, \\ \mathcal{N}_{i}=\mathcal{G}\mathcal{G}\mathcal{G}, & \mathcal{N}_{i}=2\mathcal{G}, & \mathcal{L}_{i}=2/\mathcal{G}, & \mathcal{L}_{i}=2/\mathcal{G}, \\ \mathcal{L}_{i}=\mathcal{G}\mathcal{G}, & \mathcal{L}_{i}=2\mathcal{G}, & \mathcal{L}_{i}=2/\mathcal{G}, & \mathcal{L}_{i}=2/\mathcal{G}, \\ \mathcal{L}_{i}=\mathcal{G}\mathcal{G}, & \mathcal{L}_{i}=2\mathcal{G}, & \mathcal{L}_{i}=2/\mathcal{G}, & \mathcal{L}_{i}=2/\mathcal{G}, \\ \mathcal{L}_{i}=\mathcal{G}\mathcal{G}, & \mathcal{L}_{i}=2\mathcal{G}, & \mathcal{L}_{i}=2/\mathcal{G}, & \mathcal{L}_{i}=2/\mathcal{G}, \\ \mathcal{L}_{i}=\mathcal{G}, & \mathcal{L}_{i}=2\mathcal{G}, & \mathcal{L}_{i}=2/\mathcal{G}, & \mathcal{L}_{i}=2/\mathcal{G}, \\ \mathcal{L}_{i}=\mathcal{L}, & \mathcal{L}_{i}=2\mathcal{G}, & \mathcal{L}_{i}=2/\mathcal{G}, & \mathcal{L}_{i}=2/\mathcal{G}, & \mathcal{L}_{i}=2/\mathcal{G}, \\ \mathcal{L}_{i}=\mathcal{L}, & \mathcal{L}_{i}=2\mathcal{G}, & \mathcal{L}_{i}=2/\mathcal{G}, & \mathcal{L}_{i}=2/\mathcal{G}, & \mathcal{L}_{i}=2/\mathcal{G}, \\ \mathcal{L}_{i}=\mathcal{L}, & \mathcal{L}_{i}=2\mathcal{G}, & \mathcal{L}_{i}=2\mathcal{G}, & \mathcal{L}_{i}=2/\mathcal{G}, & \mathcal{L}_{i}=2/\mathcal{G}, \\ \mathcal{L}_{i}=\mathcal{L}, & \mathcal{L}_{i}=2/\mathcal{G}, & \mathcal{L}_{i}=2/\mathcal{G}, & \mathcal{L}_{i}=2/\mathcal{G}, & \mathcal{L}_{i}=2/\mathcal{G}, \\ \mathcal{L}_{i}=\mathcal{L}, & \mathcal{L}_{i}=2/\mathcal{G}, & \mathcal{L}_{i}=2/\mathcal{G}, & \mathcal{L}_{i}=2/\mathcal{G}, \\ \mathcal{L}_{i}=\mathcal{L}, & \mathcal{L}_{i}=2/\mathcal{G}, & \mathcal{L}_{i}=2/\mathcal{G}, & \mathcal{L}_{i}=2/\mathcal{G}, \\ \mathcal{L}_{i}=\mathcal{L}, & \mathcal{L}_{i}=2/\mathcal{G}, & \mathcal{L}_{i}=2/\mathcal{G}, & \mathcal{L}_{i}=2/\mathcal{G}, \\ \mathcal{L}_{i}=2/\mathcal{L}, & \mathcal{L}_{i}=2/\mathcal{G}, & \mathcal{L}_{i}=2/\mathcal{G}, \\ \mathcal{L}_{i}=2/\mathcal{G}, & \mathcal{L}_{i}=2/\mathcal{G}, & \mathcal{L}_{i}=2/\mathcal{G}, \\ \mathcal{L}_{i}=2/\mathcal{L}, & \mathcal{L}_{i}=2/\mathcal{L}, \\ \mathcal{L}_{i}=2/\mathcal{$? E= 5%? da= 94 ? It= 60? &= 95 ? In= 750? Sh= 118? The gracing. 18 II 69. Syracy bedrebreage hoxonur son vertuo de писано, по покачеро mohichere verno. andres he wady to to ane on her to bak topuys by

Mendeleev's Table Today (since Nov. 28, 2016)

	JINR 114 Fleroy	Dubna		AASUPATUPAH AAS					
Водород 1 15 Н 152.9811 1,00794 - 259.31		ческая	Д.И	1. Мен	нделее	ва	13 14	15 16	18 17 17 17 17 17 18 18 18 18 18 18 18 18 18 18
Tyrung 3 Septement 4 Septement 4	D.I. Me 3 4	ndeleev's	Periodic 7 8		10 11	В 10,81 Вочен 12 Аl	о 600 Сатьол инний 13, Кремний 14,, 2572 Si 2,556, 1539 60,12 28,0855 144	Nitrogen 195.79 Oxygen 1 Φοτφορ 15 3p Cepa 16 P ^{10,4569} S 30,97376 4-13 32,066 30	Bar Prop 9 10 Heen 10 20 100 F 15.47% No 10.58% 10.98%
Socium 83 Magnesium 0.08 Kacwiii 19 Kaasuuii 20_s/ Kacwiii 19/968 Caasuuii 20_s/ Pytografi 37 Capsengia 61316 Pytografi 37 Capsengia 38 Rbb -1707 Sr Scasuuii 38 B5,6678 -1707 Sr Scasuuii 38,62	иттрий 39 ₆₀₅₆ Пирконий 40 ₆ У 2777 88.90585 1500 91.224	У 6,345 Сг 6,345 300 50,9415 1010 51,9961 72 321 Умандица 340 Сбетотица 72 46 Иносий 41,475 Малискани 42,3 50 Nbb 6,345 Малискани 42,3 50 Nbb 6,355 Малискани 42,3 50 92,906,355 95,94 100 100	* Mn 24.37 Fe 54.93005 324 55.847 Manganese 206 1000 Texnetusii 43 _{4.55} Pyrenoiii Texnetusii 43 _{4.55} Pyrenoiii 1981 325 Ru 1981 325 101.07	2013 СО 2015 В 100 К 10	лладий 46, ", серебро 47, 46, ", серебро 47, 46, 5, 47, 1200 d 12000 Agg 15, 107, 8682 100, 107, 8682 101, 107, 8682	цини 30 ₃₀ /36 ¹ Голли Zn 33455 5349 4333 5365 39 4333 536 4333 537 4333 69,72 6311 63,72 6311 63,72 6311 63,72 6311 63,72 6311 63,72 6311 63,72 6311 63,72 6311 63,72 6311 63,72 74,72,	ні 31	Мышьяях 33 су ст. 4 Ссяли 34 Ass 2011 ст. 4 Se 36 Ларона 51 ст. 4 76,96 36 Сурьяна 51 ст. 4 Теллур 51 Sb ст. 4 Теллур 51 Sb ст. 4 Теллур 51 121,757 ст. 40 127,60 127,60	Horn S5 Horn S5 Horn S6 BP 1200 5 8 20 70,004 70 85,90 17.0 20 70,004 70 85,90 17.0 20 70,004 70 85,90 17.0 20 10,004 70 85,90 17.0 20 10,004 70 85,90 17.0 20 10,004 70 85,90 17.0 20 10,004 70 85,90 17.0 20 10,004 70 85,90 17.0 20 10,004 100 100 100.0 20 10,004 100 100.0 100.0 20 10,004 100.0 100.0 100.0
Rubidium ass Strightime L92 Ue mi 55 % Paperit 56 CS 3997 Bat 317 122 123,90543 56 Batian 137,927 122 Франкций 67 Papariti 88 200 Prankuri 67 Raait 3200 560 Prankuri 72 Z60025 500 500 I2231 27 260025 500 500	Лантан 57 _{54%} Гафини 72 ₅ La ^{5,5750} Нff 45,5751 138,9055 120 178,49 Напинания 5454 Напин	Nichlum *** Molyblen *** Molyblen *** 56 Thirran 73 73 8 8 74 74 100 470 340 W 1 14 74 74 110 470 340 1 14	 Рений 75, % Вестий 75, % Вести	76 _{54%} , иридий 77 _{54%} пла 5458 Гг 2558 Гг 2556 Р 192,22 346 195 192,22 346 195 192,22 346 195 192,22 346 195 1941 - 46 0 Мейтасрий 64 0 [266]	атина 78 _{50%} Залото 79 _{50%} 1 30,000 79 _{50%} Ац 2000 79 _{50%} 1 19,06654 04.8 190,06654 04.8 1000 98676 88 205 1000 8667 88 66	Cadimium Si India Pryrs 80% Taxes Hg 13456 Th 200,59 353 Th Recruit 353 Th Romepowering 112 Horor Can Konconstanting Nh [283] Nihon Nihon	ий 81 (синисц 82 (с млоск РВ 7/166 833 (синисц 82 (с РВ 7/166 833 (синисц 82 (с) 833 (синисц 82	Antinopy 1987 Tellarium Bicayr 83 sp. Honmañ 8: Bi 7995 PO 206,93012 7995 Ioannañ 8: Macconait 7 Ioannañ 8: Macconait 155 Ioannañ 8: Macconait 15 Ioannañ 8: Macconait 15 Ioannañ 9: Macconait 15 Ioannañ 9: Macconait Lavermortun Ioannaít Macconait Lavermortun Ioannaít	99 Iodine 99. Xenon -00.53 4 Acrar 85 Papes 86 4 Acrar 87 Papes 86 4 Act 9 R 20.058 50 Ratabas 9.5 Ratabas 2 16 Tomescan 117 Unservant 86 Temessine Oganesson 9 9 9

Лантаноиды Lanthanoides

Церий	58 ₄₁₅₄	Празеодим 59	неодим	60 1	Прометий (61 🔬	Самарий	62	Каролий	63 ₁₁	Гадолиний	64 ₄₁₂₈	Тербий	65 _{ar}	Диспрозній	66	Гольмий	67 🧋	Эрбий	68 ₄₁	Тулий	69 ₁₂	Иттербий	70	Лютеций	71	B
Се	5.5987 6773	Pr	Nd	1,521 2006	Pm	3.33 728-	Sm	5,6407 7520	Eu	3,6791 5244	Gd	e.150 (561	Tb	5,86,99 8236	Dy	2.9389 8581	Но	5.02 S 30%	Er	6,1035 9066	Tm	e.18/31 9/21	Yb	6.254°.6 8965	Lu	5,42595 -994	H
140,115 Cerium	799 3424	140,90765 Praseodymium	m 144,24 510 Neodym	1007 ium 3060	[145] Promethium	1642 3000	150,36 Samarium	1023 1750	151,965 Europium	822 1946	157,25 Gadolinium	1314 3364	158,92534 Terbium	14599 3221	162,50 Dysprosium	1411 3561	164,93032 Holmium	1472 269/	167,26 Erbium	1529 2683	168,93421 Thulium	548 1948	173,04 Ytterbium	80) 19	174,967 Lutetium	166? 3393	1, H


Актиноиды Actinoides

Торий	90 ₅₅₀	Протактиний9	1 _{.1760} Уран	92 _{3.16}	Нептуний 9	3 _{31'91}	Плутоний	94 _{sc}	Америций 9	5 _{sr}	Кюрий	96 ₅₀₀	Берклий	97 _{s:}	Калифорний98	ar l	эпштейший 99	Фермий 10	0 Менлолевий 101 ₃	Нобелий 102	Лоуренскі	103
Th	6/95 1 700	Pa	3.89 15370 U	6.19403 18930	Np	6.2657 20258	Pu	6.95 15810	Am	5,992 13670	Cm	6,82 4510	Bk	6.23 14780	Cf "	1.30	Es 5,02	Fm	Md "	' No	Lr	:
232,0301 Thorium	1750 4790	231,03588 Protactinium	1872 238,0289 Uranium) 1126 4131	[237] Neptonium	644 *930	[244] Plutonium	(4) 3228	[243] Americium	1126 2007	[247] Curium	1315	[247] Berkelium	porta.	[251] Californium	500	[252] 860 Einsteinium	[257] Fermium			27 [262] Lawrenciu	m 1627

Водород 1 н 35854 1,00794 230,4 Нуdrogen -99,57

H - clinabo / symbol 1.00794 - artuives wacca / atomic mass 154 - заекронана конфикурация / electron configuration 13.59844 - i-in romenusa norwasauw, 8/ 131 ionization potential, eV 0.0889 - norwasan kontwalaw, 8/ million for the statistic of the statistic 252.87 - resempanyas nasionew, 9C / bioling temperature, °C - 252.87 - resempanyas nasionew, 9C / bioling temperature, °C

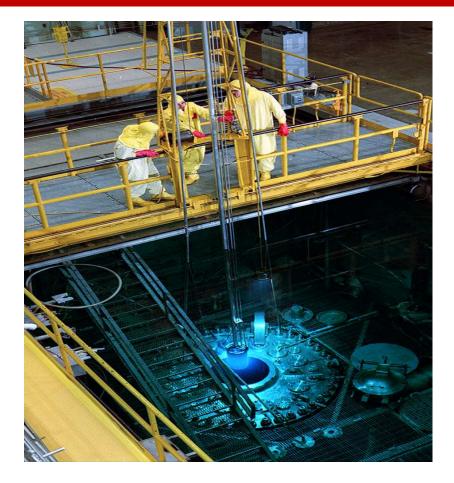
Chart of Nuclei

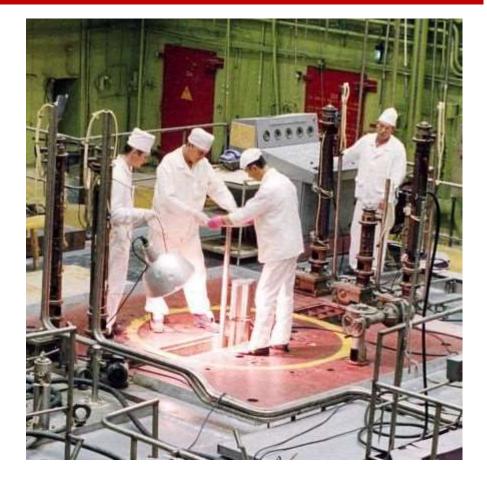
Synthesis of SHE with accelerators

- 1971; Orce, France: ^{232}Th + $^{82}Kr \rightarrow ^{310}126$ + 4n; σ_{4n} < 0.5 mb !!!
- 1971; Dubna: ²⁰⁸Pb + ⁷⁰Zn \rightarrow ²⁷⁶112 + 2n; σ_{2n} < 0.1 mb !!! (1996, GSI, Germany);
- 1971-1975; Dubna: ⁷⁶Ge, ¹³⁶Xe + ²³⁸U;
- 1975; Dubna: ⁴⁸Ca + Actinides:

Questions:

- Do SHE exist?
- Where is the region of SHE?
- How can SHE be synthesized?
- Do long-living SHE exist?
- Can SHE be produced in nanure?


Why SHE are interesting?


- Nuclear physics;
- Electrodynamics of superstrong fields;
- Atomic physics;
- Relativistic chemistry;
- Astrophysical nucleosynthesis;
- ...
- Can be easily understood by taxpayers.

Isotope reactors

HFIR, ORNL, Oak Ridge, USA, 85 MW

CM-3, IAR, Dimitrovgrad, RF, 100 MW

22 mg of ²⁴⁹Bk have been produced in HIFR ORNL

Prices per 1 mg

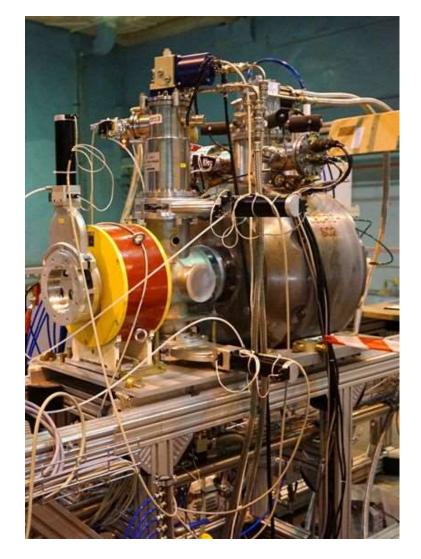
 ${}^{197}\text{Au} \approx 0.045 \text{ US}\$$ ${}^{nat}\text{U}_3\text{O}_8 \approx 0.03 \text{ US}\$$ ${}^{239}\text{Pu} \approx 4 \text{ US}\$$ ${}^{249}\text{Cf} \approx 60\ 000 \text{ US}\$$

Target wheel

 $Bk(NO_3)_3Product$

Superconducting 18 GHz ECR ion sources

~2 grams of ⁴⁸Ca

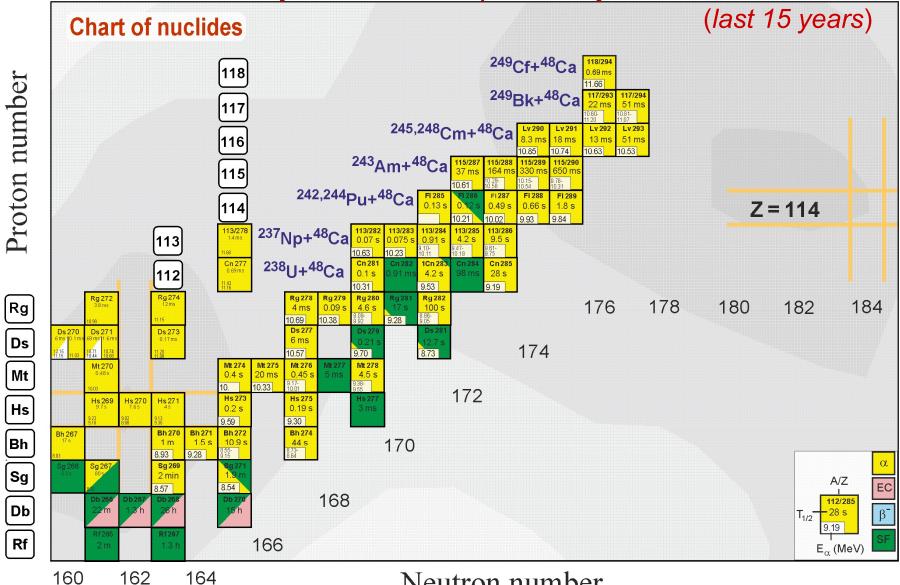

Ion source DECRIS-SC2

Consumption: 0.5-0.8 mg/h

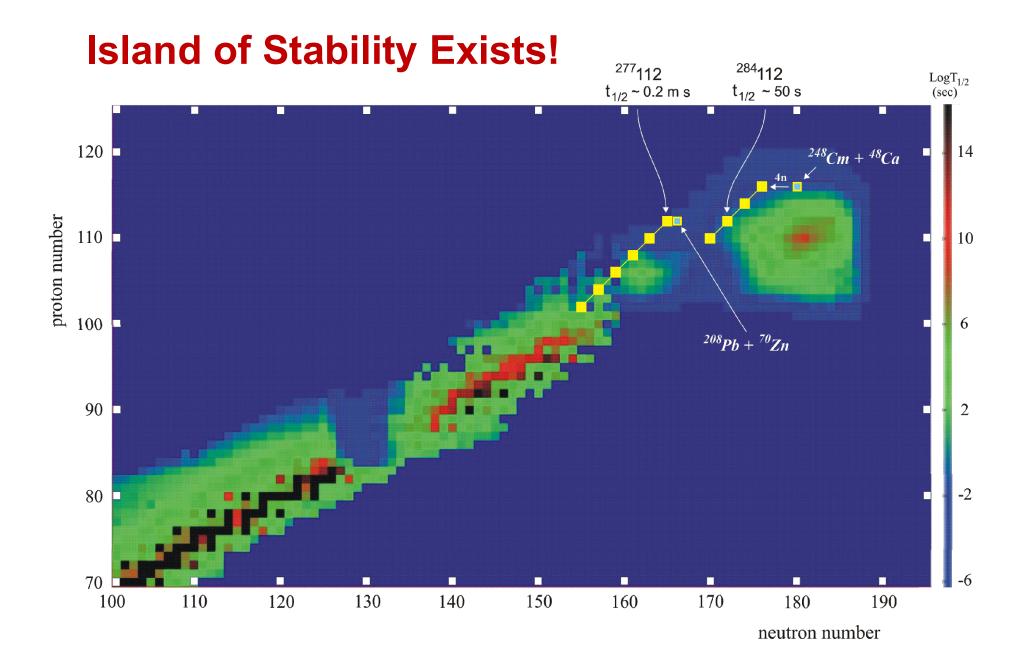
Prices per 1 mg

¹⁹⁷Au ≈ 0.045 US\$ ^{nat}U₃O₈ ≈ 0.03 US\$ ²³⁹Pu ≈ 4 US\$ ⁴⁸Ca ≈ 250 US\$

Synthesis of Superheavy Elements (U-400)



Synthesis of one SH nucleus



GREAT PROGRESS

in Synthesis of Superheavy Nuclei

Neutron number

Confirmations (2007-2014)

A, Z	Setup	Laboratory	Published
²⁸³ 112	SHIP	GSI Darmstadt	Eur. Phys. J. A 32, 251 (2007)
²⁸³ 112	COLD	PSI-FLNR (JINR)	NATURE 447, 72 (2007)
^{286, 287} 114	BGS	LRNL (Berkeley)	P.R. Lett. 103, 132502 (2009)
^{288, 289} 114	TASCA	GSI – Mainz	P.R. Lett. 104, 252701 (2010)
^{292, 293} 116	SHIP	GSI Darmstadt	Eur. Phys. J. A 48: 62 (2012)
^{287, 288} 115	TASCA	GSI – Mainz	P.R. Lett. 111, 112502 (2013)
²⁹⁴ 117	TASCA	GSI-Mainz	P.R. Lett. 112, 172501 (2014)

May 2012: Official approval of the name *Flerovium* for element *114* and the name *Livermorium* for element *116*

30th December 2015:

Approval of the discovery of new elements 113, 115, 117, and 118

- element 113: RIKEN (Japan)
- elements 115 and 117: JINR (Dubna) LLNL (USA) ORNL (USA) collaboration
- element 118: JINR (Dubna) LLNL collaboration.

28th November 2016:

IUPAC formally approved names and symbols of new elements:

Nihonium(Nh) for element 113,Moscovium(Mc) for element 115,Tennessine(Ts) for element 117, andOganesson(Og) for element 118.

Флеровий 114	Московий 115	Ливерморий 116	Теннессин 117	Оганесон 118
Fl	Мс	Lv	Ts	Og
Flerovium	Moscovium	Livermorium	Tennessine	Oganesson

All these elements were synthesized for the first time at the U-400 accelerator complex of the Flerov Laboratory of Nuclear Reactions of JINR.

International Union of Pure and Applied Chemistry

In pursuit of new elements

Berkeley Lab

Lab USA, California, Berkeley: 1958 – 102(No), 1961 – 103(Lr), ... Glenn Seaborg, Albert Ghiorso

USSR, Dubna: 1964-1975 – 102,103,104,105 (Dubnium), 106,107,108 G.N. Flerov, Yu.Ts. Oganessian

2000 - 114, 2002 - 116, 2003 - 113, 115, 118, 2009 - 117

Germany, Darmstadt, GSI: 1989 - 2000 – **108, 109, 110, 111, 112** P. Armbruster, G. Münzenberg , S. Hofmann

Japan, Tokyo, RIKEN: 2002 – **110, 111, 112,** 2004 – **113** K. Morita

Mendeleev's Table Today

			114 Flero		To The second second	-	Detail		ALEPHULA PE		Ser-4		to the second				
			4	Dubna						No. of Concession, Name of			STO I		-		
	Пе	ри	ολν	чес	кая	таб	<u>бли</u>	12.3		ент	TOR			201-0	(A)	AV AN	10
1 Водорад 1 _Б		pm	ОДИ	100	Кал	iuc		Mo	НДЕ		Pa					-	18 _{Гелий} 2 ₁₆
H 13.2984 6,089 1,00794 -259,3 Hydrogen -253.8		(and						11				13	14	15	16	17	He 34,58,741 8,785 4,0026 -2722 Helium 268.5
Латий 3 ₅ Li ³²⁹¹² 5	, Бериллий 4 2/ 24 Ве 9,3230 1828	D.I	. Me	ndele	ev's	Perio	odic '	Table	e of E	leme	ents	Бор 5 _{эр} В 329588 10.811 алж	Углерод 6 250 С 11,740 12,011 (500,855)	Asor 7 25' N 14,9014 14,0067 27 010	Кислород 8 ₃₇ О ^{13,618} 1,59994 - 0,878	Фтор 9 ₂₇ F ^{15,4787} 18,9984 - 2184	неон 10 ₂₅ Ne 31,50454
6,941 180,5 Lithium 134 Harputi 11 ₂₈	4 9,01218 1297 2 Beryllium 2471 . Marxmii 12 30											10,611 2025 Вогол #00 Алюминий 13 _к	12,011 (уш.482) Carbon Кремний 14 ₇₅	14,0067 Nitrogen 198.79 Фосфор 15 _{3р} .	tepa 16 _{jp} .	хлор 17 уу	Neon -20,9 Аргон 18 _{3р} .
Na 5.1340 22,989768 97.7 Sodium 88.	7 Mg 7,64624 1740 24,3050 630 Magnesium 1990	3	4	5	6	7	8	9	10	11	12	Al 508577 26,981539 670,32 Aluminum 2515	Si 350 44 28,0855 14 4 Silicon 3265	P 18,48569 30,97376 44,15 Phosphorus 273	S 0.5004 32,066 (15.3) Sulfar 445,6	Cl 12,94764 3,232 35,4527 -481,5 Chlorine -54.04	Ar 5,559,2 39,948 -199,35 Argon -185,85
Калий 19 ₄ К ^{1,240} 8 ⁴	кальций 20 ₄₃	Скандий 21 ₂₀ Sc 5301	титан 22 5 Ті	ес., Ванадий 23 ₃₀ х ^{ад} V 6.4	⁶⁴ Χραν 24 23 το 60 Cr ^{6,76614} 7200	марганец 25 Мп 25	, железо 26 361 6 Fe 256	кобальт 27	никель 28 _{30%}	медь 29 Сц 52003 820	цинк 30 _{36'15} Zn алися	Босной 31 ₄₇ Ga 5,9900	Германий 32 ₄ , Ge ^{7,600}	мышыяк 33 ₄₀ As	Селен 34 _{ср} Se аларая 400	Бром 35 «5" Br (1,81,58) 1-9	Криштон 36 ₂₇ Кг 3.54
39,0983 at.a Potassium 79		44,95591 In Scandium 28	47,88 10 Titanium	408 50,9415 19 2287 Vanadium 34	10 51,9961 1800 07 Chromium ≥71	54,93805 12 Manganese 206	6 55,847 (83 1 Iron 288	s 58,93320 146- 1 Cobalt 292	58,6934 Nickel 2913	63,546 084/0 Copper 2562	65,39 4 9.53 Zinc 967	69,723 29,74 Gallium 3.374 Индий 49	72,61 938,25 Germanium 2835 0.0000 50	74,92159 Сті. 6.4 Arsenic	78,96 221 Selenium 685 Teorayp 52	79,904 72 Bromine 8,33	83,80 135,96 Кгурton -155,22 Ксенон 54
Rb	Sr 540431	Иттрий 39 ₄₁ , У ⁵² 88.90585	🛛 Zr 👒	нала насбий 41 _{на} жив Nb коми коми 92,90638 ма	молибден 42 ₁₈₅₆ м Мо черени то Мо черени 1000 уг. 95,94	Технеций 43 ₁₄	8 Ru 110	родий 45 Rh ⁷⁴⁹⁸⁹ 1246	Pd	Ag yard	Кадмий 48 ₆₋₅₅ Cd ^{8,0040}	In 5.78576	Sn 7,3081 780 118,710 20,95	Sb 514 121,757 6304	Te 10096	I 10, 5125 126,90447 111.7	Xe 2.12987 131.29 11.75
85,4678 29,3 Rubidium ⁵⁸ Llesoni 55 ₆₀	87,62 977 Strontium 192 Baperi 56		Zirkonium		Molybdenum (S) Bonseppan 74	[98] 2 Тесниеции 2 Рений 75	-	4 102,90550 1944 8 Rhodium зез Иридий 77 51%	4 106,42 1552.5 9 Palladium 200 платика 78 _{50%}		112,411 32 Cadmium 52 Pryrs 80	114,818 изм indium 302 Таллай 81 _ж	Тіп. 23,93 Тіп. 2002 Сянисц. 82 ₆₅	Antimony 1989 BHEMYT 83 ip	127,60 419,51 Tellurium 988 Полоний 84 _{5р}	125,90447 111.7 Iodine 184.4 Actar: 85 67	131,29 11.55 Хепоп -108,34 Радон 86 ₅₀
Cs 18930 1872 132,90543 18.4	a <mark>Da</mark> avan	La 557 138,9055 6	178,49	180,9479 50	7 183,84 422	Re 233 186,207 118 Rhenjum 239	* OS 2349	² Ir 220	Pt 21-90 5 195,08 1768.4 9 Platinum 2322		200,59 .3883	TI 4.10628 800 204,3833 304 Thallium 423	Pb 7/1665 (1150) 207,2 327.45 1090] 1749	Bi 7,289 9326 208,98037 271.4	Po 541.671 Gate Gate 251	At %	Rn 9,73 [222] -71 Radon -41.7
Cesium 67 Франций 87 _л	. Barium 15/7 Радий 88 ,	Lanthanum 34 Актикий 89 ог	у Резерфордий	104 дубний 105	Сиборгий 106	Борий 107	Хассий 108	Мейтнерий 109	Дармштадтий 110	Рентгений 111	Колсронкой 112	Нихоний 113	Флеровий 114	Bismuth 1964 Mocconnii 115	Родоніцт 952 Ливерморий 116	Tenneccus 117	Оганстон 118
Fr 4,07. [223] 2	Ra 3.27892	AC 130 [227] 10	5 Rf [261]	N Db [262]	ee Sg of [266] Seabarstum	Bh *	F HS (* [269] Hassium	Mt ^{ra}	DS 67	Rg "	Cn [285]	Nh	Fl		LV	TS Tennessine	Oganesson

Актиноиды Actinoides

H - canabo, / symbol 1.00794 - arouwas wacca / atomic mass 13¹ - 3-aeropowara kondyarpaujus / electron configuration 13,59644 - 1-in moreupus nonvasuuw, 36 / Jati onization potential, eV 0.0899 - nonvoins. xx / k¹/ density (k/m²) -253,37 - resinaparps anisakemix, 9°C / molifing temperature, 9°C -252,87 - resinaparps anisakemix, 9°C / boling temperature, 9°C

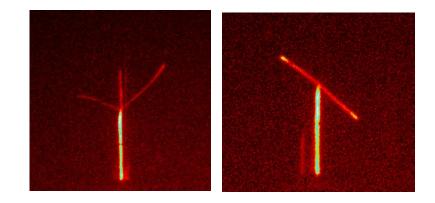

10 of 18 elements discovered during last 60 years were first synthesized in Dubna

Questions and answers:

- ➢Do the SHE exist? YES!
- Does the "Island of stability" of SHE exist? YES!
- How to synthesis SHE? fusion reactions are yet the only working method
- How many new elements can be synthesized in the nearest nuture 119?, 120?, ???
- How many elements are in Mendeleev Periodic Table of Elements? -???
- How to reach the center of the Island of stability? ???
- How long do live the most stable nuclei from the Island of stability -???
- Can SHE be produced in nature? ???

Фабрика сверхтяжелых элементов

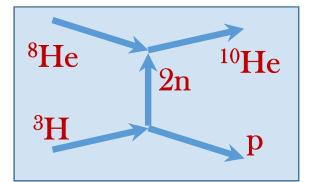
ЗАВЕРШАЕТСЯ СОЗДАНИЕ запуск: 2018 год


Study of exotic nuclei close and beyond the nucleon stability limits

ACCULLINA-2

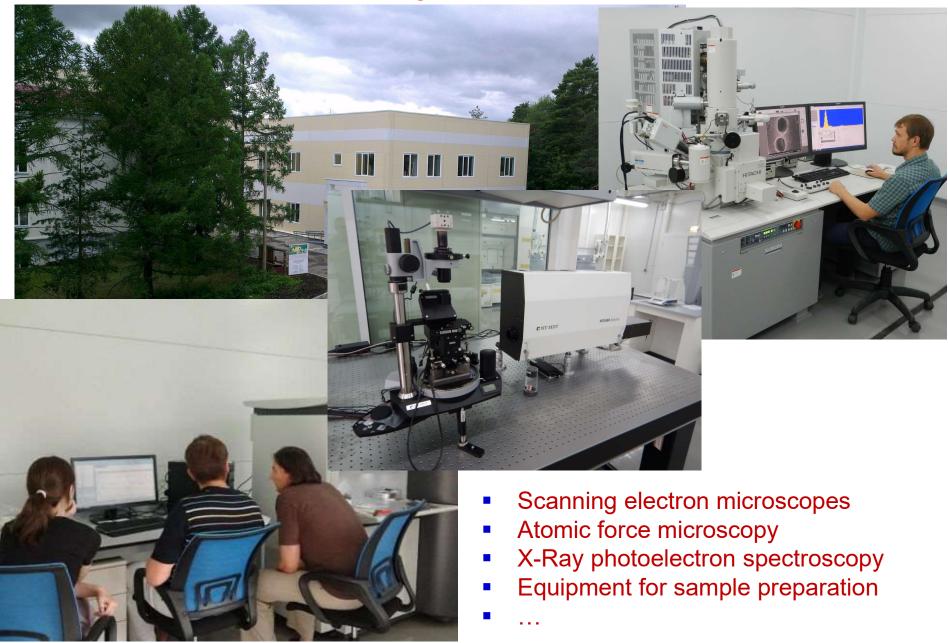
New separator for study light exotic nuclei and reactions with them

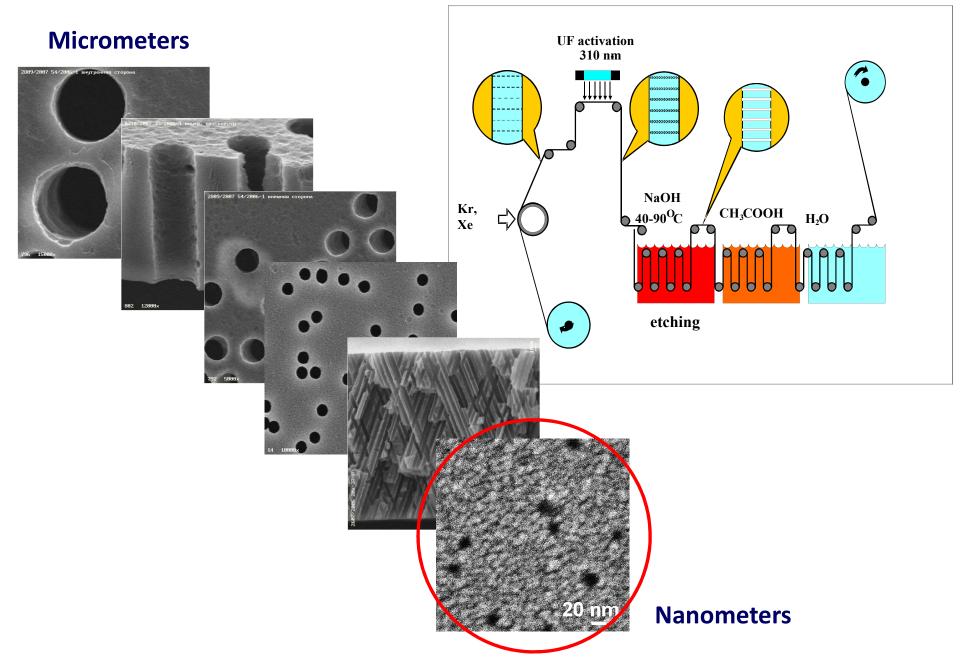
2015/16: commissioning tests, 1st runs
2016: zero angle spectrometer
2018/19: unique cryogenic tritium target



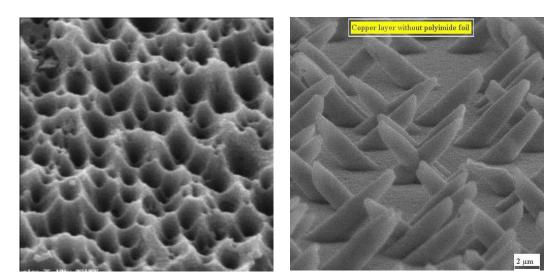
Directions of the future researches:

- structure of light exotic nuclei
- reactions with exotic nuclei
- study of rare decay modes

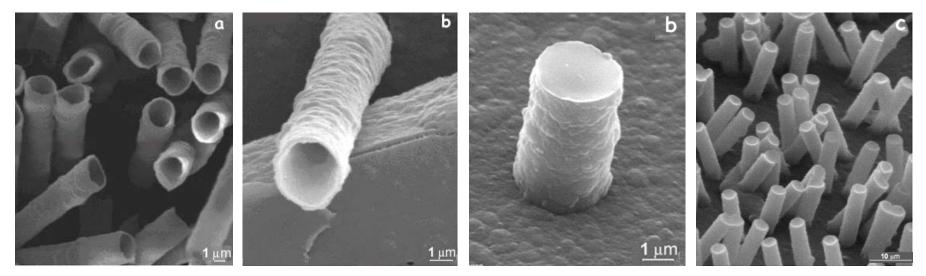




Applied research


Nano Laboratory

Production of track membranes (IC-100)


Accelerators-born nanostructures

new composite materials:

- extended layers adhesion strength
- increased thermal resistance
- flexible printed circuit boards

Polymer composites produced with the use of track membranesnanotubesnanowires

Radiation Hardness Tests For Electronic Components

Development of radiation-proofed electronic components is the first priority task of the modern high-class electronic industry.

Long-distance space flights, long-lived sputniks, etc. are extremely critical to the quality of electronic chips.

Welcome to DUBNA!

