

Training Programmes

Prof. Stanislav Pakuliak JINR UC Director E-mail: pakuliak@jinr.ru Website: uc.jinr.ru

International Student Practice

Summer Student Programme

More oppotrunities

Practice and training for researchers and engineers

JINR outreach programmes

Science brings nations together

Start your career at JINR

- World-class scientific research
- Wide range of research areas
- Qualified supervision
- Fruitful contacts
- International collaboration
- Variety of training programmes

Main goals

- Educate students that can advance in the various nuclear research activities offered by JINR, to the benefit of the JINR Member States
- Integrate young scientists into the international scientific community

International Student Practice at JINR

1st STAGE, May South Africa

2nd STAGE, July

Bulgaria, Czech Republic, Slovakia, Poland, Romania, Azerbaijan

3rd STAGE, September Egypt, Belarus, Cuba, Serbia, Mongolia

JINR provides

- World-class scientific research
- Wide range of research areas
- Qualified supervision
- Fruitful contacts
- International collaboration
- Variety of training programmes
- Unique location (Dubna)

JINR fields of research

- Theoretical physics
- Particle physics
- Relativistic nuclear physics
- Heavy ion physics
- Low and intermediate energy physics
- Nuclear neutron physics
- Condensed matter physics
- Radiation biology and radiobiological investigation
- Information technologies and modern computational techniques

Attracting YOUth to Science

Practice participants representation

- Aze rbaijan
- Be larus
- Bulgaria
- 🗖 Cu ba
- 🗖 Czech Republic
- Egypt
- Po land
- 🗖 Romania
- RS A
- Serbia
- Slo vakia

Total number of participants since 2004 – 1459

International Student Practice activities

3 weeks

- Introductory lectures
- Work on the projects in international scientific groups
- Final presentation of the projects

Introductory lectures

Work on the projects

Work on the projects

Final project presentation

Summer Student Programme

Summer Student Programme

• Work in international scientific groups Programme

Duration 6-8 weeks

Funding & conditions

Participants

- Free accommodation in JINR hostel
- Reimbursement of all travel expenses
- Daily allowance •
- Bachelor students finishing their 3rd year
- Master students
- PhD students of the 1st year \bullet

How to apply

- Fill in the application form on students.jinr.ru
- Highlight the spheres of interest •

63 students were selected for the JINR SSP-2017

Launched in 2014

SSP fields of research

Summer Student Program

at Joint Institute for Nuclear Research

HOME ABOUT JINR

Applications admission closed

Applications review and selection by supervisors: 21 Apr 2017, 21:00

Participants list publication: 25 Apr 2017, 19:00

SUMMER PROGRAM -2017

Contacts

Sponsors

Organizers

Submit news

News

About the Program

Purpose and Imp

Program Purpose

The main purpose of t

Member States on a cor

projects. Program Dates Fields of research he Summer Student scientific groups and w year. **Program** Participants How to get Participants of the Prog

students or PhD studen organizations of the JIN **Application Procedure**

To participate in the sele

Neutron Physics

On the basis of the JINR Laboratory of Neutron Physics, two neutron sources are operated: fast neutron pulsed reactor IBR-2 and intense resonance neutron source IREN. These acilities allow conducting research on the breaking of fundamental symmetries in nuclear interactions, studying the physics of ultra-cold neutrons, developing application ethods in neutron nuclear physics

Investigations of Neutron Nuclear Interactions and Properties

Development of Experimental Facilities for Condensed Matter Investigations with Beams of the IBR-2 Facility Development of the IBR-2 Facility with a Complex of Cryogenic Neutron Moderators

Condensed Matter Physics

In the laboratories of the Institute, theoretical and experimental research in condensed matter physics is carried out. It includes spectroscopic studies of hydrogen bonding; behavior of surfactants, polymers and their mixtures in the volume and on the surface; study of plasmonic nanostructures in the pores of silicon oxide using Raman, SERS and CARS spectroscopy methods; structural analysis of complex nano- and micromaterials using small-angle neutron scattering; computer simulation of the tunnel characteristics of superconducting nanostructures, etc.

JINR Laboratory of Information Technology ensures creation and further development of the JINR information and

computer infrastructure, methods, algorithms and software for the modeling of physics systems, mathematical

processing and analysis of experimental data. The following areas are being developed: monitoring of distributed information and computer systems; data storage systems

and technologies; parallel programming technologies MPI, OpenMP, CUDA, MPI+CUDA; hybrid architectures; Big Data; cloud technologies; development of information systems;

development and analysis of mathematical models of

quantum computing and quantum information; information methods of data and social networks analysis; computational

methods in physics; mathematical methods for simulation of

complex physics systems: development of algorithms of

parallel computing; mathematical methods and software for

Investigations of Condensed Matter by Modern Neutron Scattering Methods Multimodal Platform for Raman and Nonlinear Optical Microscopy and Microscopty for Condensed Matter Studies

Networking, Computing, Computational Physics

processing of experimental data

Information and Computing Infrastructure of JINR Methods. Algorithms and Software for Modeling Physical Systems, Mathematical Processing and Analysis of Experimental Data

Radiobiology

Earth

In the JINR Laboratory of Radiobiology, theoretical and experimental issues of biological effects of heavy charged particles of different energies are studied. Cosmic dust and organic compounds in meteorites and ancient terrestrial rocks are also investigated by nuclear physics methods. It allows obtaining data that may reveal the background of the origin of terrestrial and extraterrestrial life

Research on the Biological Effect of Heavy Charged Particles with Different Energies Research on Cosmic Matter on the Earth and in Nearby Space; Research on the Biological and Geochemical Specifics of the Early

- Theoretical and **Mathematical Physics**
- **Particle Physics** ullet
- **Nuclear Physics** •
- **Neutron Physics** •
- **Condensed Matter Physics** •
- Networking, Computing, • **Computational Physics**
- Radiobiology •
- **Accelerators Physics** •
- Particle Detectors
- Applied Research Using • **Nuclear Physics Methods**

JINR SSP participants representation

More opportunities

International Student Summer Schools

International School on Nuclear Methods for Environmental and Life Sciences

Montenegro, Budva, Becici April 22-28, 2018

TOPICS:

- Nuclear and related techniques for the environmental studies
- Nuclear medicine: radioisotopes and hadron therapy
- Nuclear detectors in medicine
- Radioecology
- Radiogenetics

Organizing Committee: Chairman: Victor Matveev Co-Chairmen: Stanislav Pakulyak Vadim Bednyakov Secretary: Tatyana Donskova Members: Otilia Culicov Marina Frontasyeva Andrey Khrgian Julia Rybachuk Konstantin Vergel

Alexey Zhemchugov

The 8th International Student Summer School «Nuclear Physics – Science and Applications» (NUCPHYS – SC & APPL)

Seventh International Student Summer School on Nuclear Physics – Science and Applications (NUCPHYS-SC&APPL)

Faculty of Physics Adam Mickiewicz University in Poznań Poznań, Poland, June 24 – July 4, 2015

Training courseFRRCin CATIA-GDML Geometry Builder

FAIR-Russia Research Center

Practice and training for researchers and engineers

Dedicated training centre at JINR (since 2014)

Motivation

- Modern research requires both practical skills and theoretical knowledge.
- JINR provides an opportunity to obtain access to radioactive materials, working accelerators, giant experimental setups etc.

Usus est optimus magister

Scope of the training

Basic laboratory works (since 2016)

- Nuclear physics and cosmic rays
- Electronics
- Vacuum technology

Advanced laboratory works

- Radiation protection and safety
- Controls and automation
- RF technology
- Advanced electronics
- Magnets
- Particle detectors
- Neutron physics, metrology etc.

Laboratory works at the Linac-800 accelerator (will be available after Linac-800 commissioning)

- Accelerator operation and beam diagnostics
- Detector characterization using particle beams
- and more

Engineering Training Lab

Scientific and Engineering Group LINAC 200 electron accelerator

Outreach programmes

International scientific schools for physics teachers at JINR and CERN

What do we want to achieve?

- Raise and maintain the interest of students in modern science.
- Motivate students to study science and engineering at universities.
- Prepare the future generation of scientists and engineers.
- Show that Science is alive!

Basic components:

- Visits to experimental facilities;
- Lectures;
- Hands-on activities;
- Meetings with research physicists;
- Communication with colleagues from different regions.

Bringing Science closer to School

Schools at JINR

Schools at CERN

Visits to the JINR labs

for students and teachers

Festivals of science and Days of Physics in Dubna

Parameters		1
Nuclotron – Superconducting heavy ion synchrotron		
Circumference, m	251.5	
Ions	from p up to A>100	
Maximum magnetic rigidity, T m	43	
Maximum energy	12 GeV for protons, 6 GeV/u for A/Z = 1/2	71
Intensity, particles per pulse	from 10^5 (heavy ions) up to $5 \cdot 10^{10}$ (d)	
Magnetic field ramp, T/s	up to 2	
Slow extraction spill duration, s	up to 10	
Alvarez-type DTL LU-20		
Length of the cavity, m	14.5	
Maximum fore-injector voltage, kV	700	
Output proton energy, MeV	20	
$\label{eq:output} \begin{array}{c} \mbox{Output ion } (Z/A \geq 1/3) \mbox{ energy}, \\ \mbox{MeV/u} \end{array}$	5	1
Peak current, mA	10	
RF frequency, MHz	150	

3D tours around JINR basic facilities

uc.jinr.ru, '3D visit' section

al target _ 2014

aboratory of High Energy Physic

http://edu.jinr.ru/

'NICA Mega-science project' video lesson

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

КОЛЛАЙДЕР NICA

Popular lectures on modern science

- Modern science in simple words
- Entertaining particle physics for school students
- Lab work using real experimental data

Renovated JINR museum

Videoconferences with JINR for schools

Science brings nations together

Science brings nations together

Thank you for your attention

Welcome to Dubna