Greetings (Здравствуйте)

Thabiso Nkwashu North-west University

Vusumzi Gosani University of Fort Hare

DEVELOPMENT OF A PRACTICUM "TIME OF FLIGHT-ENERGY SPECTROMETER" FOR THE VIRTUAL LABORATORY

Project supervisors

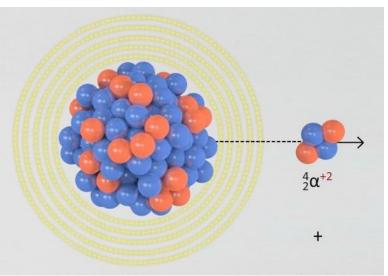
Supervisor – Prof. Yuri. Panebrattsev

Co-supervisor - Pavel Semchukov and Kseniya Klygina

Lead experimentalist - Alexander Strekalovsky

OUTLINE

- ➤ Aim of experiment
- ➤ Alpha particles and alpha decay
- Radium-226
- ➤ Time of flight-Energy (TOF-E) spectrometer
- Time of flight-energy spectrometer Detectors and experimental setup
- Time of flight-energy spectrometer experimental setup
- > Results
- Data processing
- calculation of time and energy resolution
- ➤ Virtual lab
- **>** conclusion


AIM OF PRACTICUM

The aim of this practicum is to show how the time of flight and energy spectrometer works.

ALPHA PARTICLES AND ALPHA DECAY

➤ **Alpha decay** – a radioactive process whereby a particle with two neutrons and two protons is ejected from the nucleus of an radioactive atom. The particle is identical to the nucleus of a helium atom, that particle is known as an alpha particle.

$$_{Z}^{A}X \rightarrow _{Z-2}^{A-4}X + _{2}^{4}\alpha \rightarrow _{Z-2}^{A-4}X + _{2}^{4}He^{2+}$$

RADIUM-226

Radium-226 decays mainly via alpha decay and emits 4 alpha particles of different observable

energi e s.	82	83	84	85	86	87	88
226							Ra-226 1620 a
225							
224							α,γ
223							
222					Rn-222 3,82 d		
221							
220					α		
219							
218			Po-218 3,05 min				
217							
216		_/	α				
215							
214	Pb-214 26,8 min	Bi-214 19,7 min	Po-214 16,4 µs				
213	β	·γ	В , у				
212		_/	α				
211							
210	Pb-210 22,3 a	Bi-210 5,01 d	Po-210 138 d				
209	β	β.					
208		_/	α				
207							
206	Pb-206						

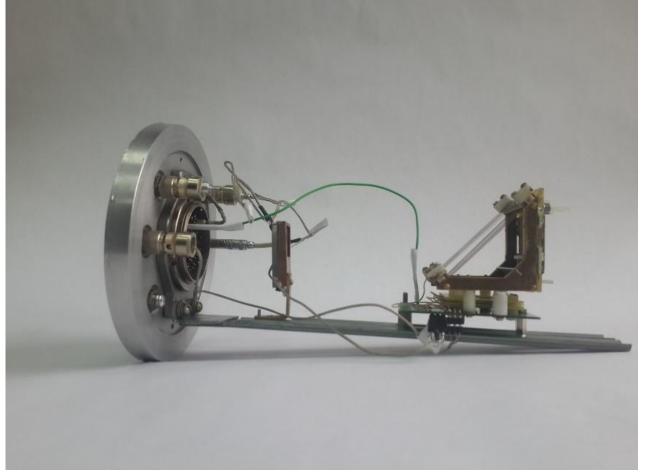
Isotop	Energy, MeV	relative intensity, %		
Ra 226	4.160	0.0002		
Ra 226	4.191	0.0008		
Ra 226	4.340	0.0066		
<mark>Ra 226</mark>	<mark>4.601</mark>	5.9544		
<mark>Ra 226</mark>	<mark>4.78434</mark>	94.038		
Rn222	4.827	0.00055		
Rn222	4.987	0.078		
<mark>Rn222</mark>	<mark>5.48948</mark>	99.921		
Po218	5.181	0.0011		
Po218	<mark>6.00236</mark>	99.977		
Pb214->β-,γ	Bi214-> β-,γ	Po214		
Po214	6.6101	0.00006		
Po214	6.9026	0.01057		
Po214	<mark>7.68682</mark>	99.98937		
Pb210->β-	Bi210-> β-	Po210		
Po210	4.5167	0.0012		
Po210	<mark>5.30433</mark>	99.9988		

Time of flight-energy spectrometer

The time of flight-energy spectrometer uses two detectors, one as Start and one as Stop.

Start detector needs to be transparent to the particles and produce the trigger signal then particles flies through it.

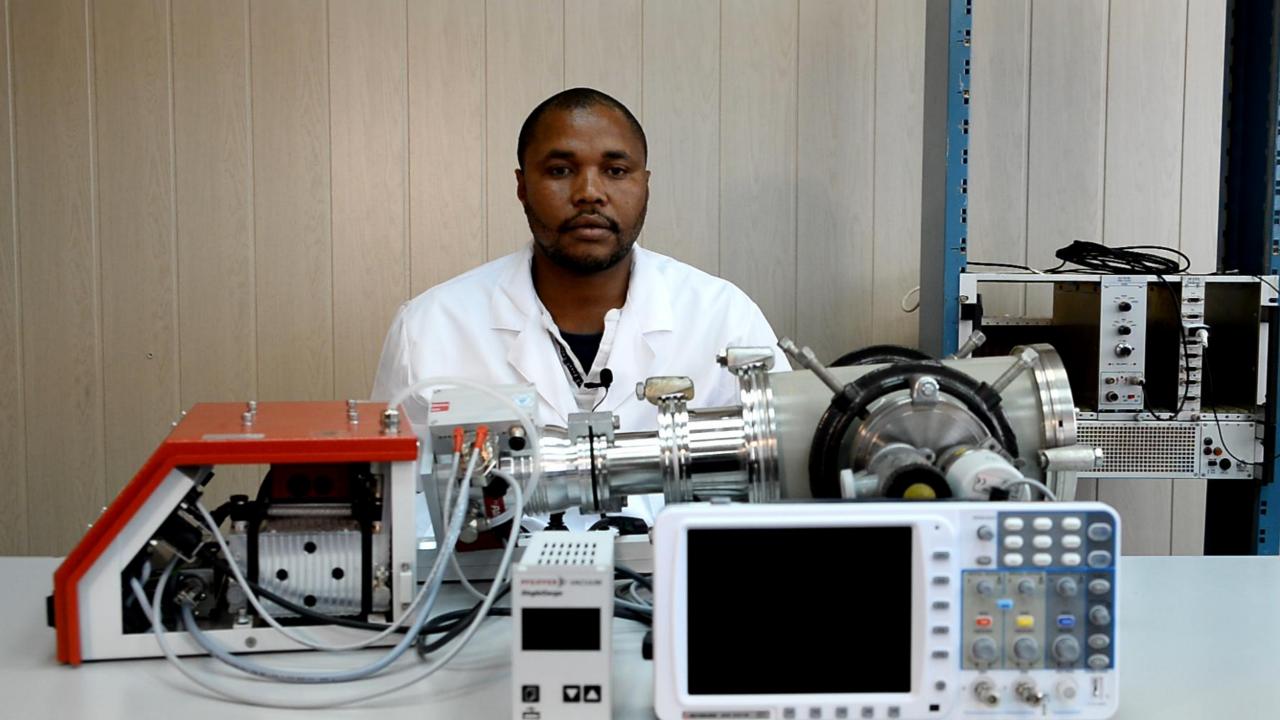
Stop detector measure the kinetic energy of the particles.

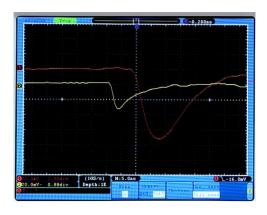

Knowing the distance between this two detectors it is possible to measure Time of Flight and calculate Velocity of the particle, so it is possible to calculate the mass of the particle using:

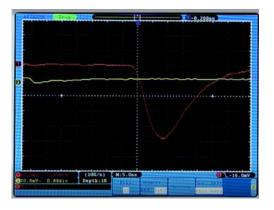
$$E = \frac{1}{k} m v^2$$
, where k=2

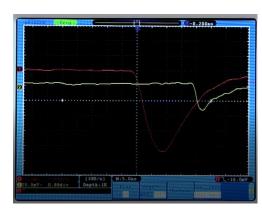
The specifics of this spectrometer is that it can work in a wide range of energy and mass (4 MeV-120MeV and 4 amu-150 amu respectively).

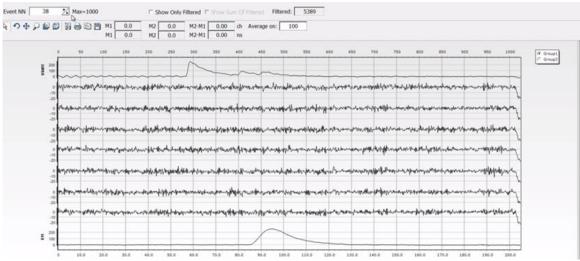
TOF-E spectrometer detectors

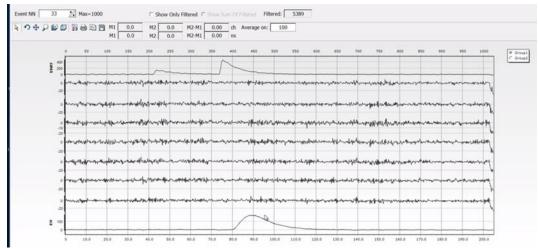


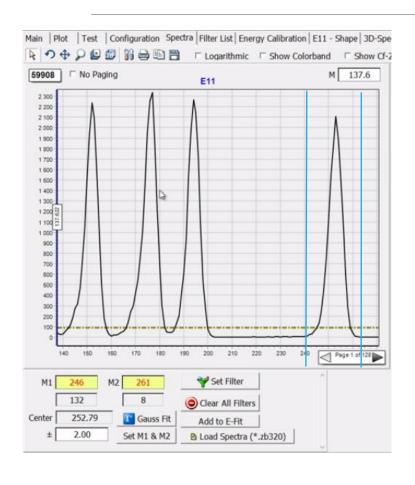


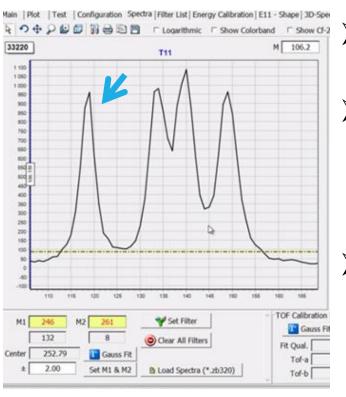

EXPERIMENTAL SETUP






Results




DATA PROCESSING


This is the energy spectrum.

These are four peaks which represent alpha particles with four different **observable** energies.

DATA PROCESSING

- This is the time-of flight spectra.
- Each of the four peaks on the left represents the time of flight of one particle in the previous slide.
- The peak to your right is a filtered

RESOLUTION CALCULATION

TIME RESOLUTION

Total counts = 929 counts

Maximum peak position = 118.7

If $T_{filtered} = 8 ns$

Time resolution = 0.44 ns = 440 ps

ENERGY RESOLUTION

Total counts = 2100

 \therefore FWHM is at 460 counts and FWHM = 3 channels. \therefore FWHM is at 460 counts and FWHM = 6 channels.

Maximum peak position = 253

Relative energy resolution = $\frac{3}{118.7} \times 100 = 2.5\%$ Relative energy resolution = $\frac{6}{253} \times 100 = 2.4\%$

If $E_{max} = 7.687 \text{ MeV}$

Energy resolution = 0.18 MeV or 180 KeV


VIRTUAL LABORATORY

The main goal of the virtual laboratory is to conduct experiments (eg. Time of Flight-energy (TOF-E) spectrometry) and include the scientific data, obtained in the experiments, in a virtual laboratory for students to conduct virtual and online laboratory research using modern scientific equipment and data obtained from the existing physical facilities.

CONCLUSION

In conclusion we were able to learn how to assemble the spectrometer and use it for the our practicum and collected the data.

we also recorded videos and voice recordings for the development of the virtual laboratory.

ACKNOWLEDGEMENTS

science & technology

Department:
Science and Technology
REPUBLIC OF SOUTH AFRICA

iThemba LABS

Laboratory for Accelerator Based Sciences

Thank you! (Спасибо!)

THANK YOU FOR YOUR **ATTENTION** ANY QUESTIONS?