Electronics & RF technology handson training The training was done at the University Centre Presentation by

OJEMAYE JUSTIN EWERE Supervisors: Kruchonak Uladzimir Belozerov Dmitriy BUZMAKOV VLADIMIR VERLAMOV KIRILL Nozdrin Mikhail

Voltage divider

- In assembling the scheme, voltage divider was assemble first, Voltage divider is also known as Potential divider, is a passive linear circuit that produces an output voltage V_{out}, that is a fraction of its input voltage V_{in}.
- This is the formular to calculate voltage divider:

$$R_{total} = R_1 + R_2$$
, then $U_{out} = U_{in} R_2 / R_{tota}$

 U_{out} – voltage output from divider U_{in} – voltage input from divider

Step motor control unit is a device used to control step motor.

Step motor can move magnetic field sensor to control magnetic field.

Components needed in the scheme are:

- PCB Board 1
- Resistor -17
- Polar capacitor 3
- Uni polar capacitor 1
- Light diode power Indicator(Yellow) 2
- Light diode Pulses Indicator(Red) 4
- Transistor KT315A -4
- Counter K155IE7-1
- Timer NE555 -1
- Logical micro scheme K131LA3 -2
- Conductors
- This device have up to 5 different scheme, that makes up the complete step motor control unit;
- 1. Generator
- 2. Frequency divider (counter K155IE7 chip)
- 3. Logical part
- 4. Amplification stages (transistor switches)
- 5. Other elements

1. Generator

- a. Purpose: scheme automation, to avoid usage of the external generator. Output — meander. Frequency is set by calculation of the RCcircuit parameters.
- b. RC-circuit. Charges and discharges continuously.
- c. Second resistor is needed for scheme protection from the short circuit. It influences signal duration.
- d. Timer. Converts saw tooth signal of the RC-circuit to the meander.

1. Generator b. RC-circuit

- I also have RC circuit, where I used this formular $\tau = R \cdot C$ to calculate for Time charge by the capacitance on 63%.
- I assemble High Pass Filter, is used to calculate the resistance of capacitance of some frequency.
- R_t= X_c+ R where X_c- is the resistance of capacitance of frequency.
- $U_{out}/U_{in} = 0.7 = R/R_t$.

2. Frequency divider (counter K155IE7 chip)

- a. Forms four signals
 (generator signals divided
 by 2, 4, 8 and 16). We need
 two of them by 2 and 4.
- b. Also converts input signal to TTL signal.
- c. Depending on timing and truth table the counter connection circuit was chosen (for the count mode).

3. Logical part

- Forms four independent pulses shifted by a period quarter each. Such timing is needed for the step motor work.
- b. Based on 2 logical microschemes K131LA3
- c. K131LA3 consist of 4 logical elements (&+NOR)

3. Logical part

Example of two independent pulses shifted by a period quarter each.

AKTAKOM Stop		T		🗍 39.00ms 🌖	\$
<u> </u>					· · · · · · · ·
					· · · · · · · · -
iiiii		<u>.</u>			
<u> </u>		<mark>.</mark>	· · · · · · · · · · · · · · · · · · ·		
2		•••-••••••••••••••••••••••••••••••••			-++++++++++++++++++++++++++++++++++++
					· · · ·
					· · · · · · · · ·
	<u> </u>				
1					
y1:8.88V					
y2:3.92V					
	(10 KS/e)	M·50me		····	<u>, , , , , , , , , , , , , , , , , , , </u>
	-1 Depth $\cdot 10$	K THE SOLUTION			
0.0401	L pepen. 10	Type		Savo	
		Image		Save	

4. Amplification stages (transistor switches)

- a. Amplify to 12 V and invert output signals of the logical part.
- b. 4 transistor switches were assembled.

4. Amplification stages (transistor switches)

Example of two output signals after transistor switches.

AKTAKOM Stop		Ŧ		🔽-42.00ms	\$
			Ū		
					· · · · · · · · -
<u>-</u>					· · · · · · · · · · ·
		· · ·			
					· · · · · -
		: 1	· · ·		
2			· · · · · · · · · · · · · · · · · · ·		and and a state of the state of the state
		·····			*******
<u> </u>					· · · · · · · · ·
1 _y:12.40V)				
y1:22.40V					
y2:10.00V					
1 5V2.00div	(10KS∕s)	M:50ms		(1	<u>\</u> 0.00mV
25V- 0.04div	Depth:10K	Type			
		Тура		Save	
		ımage			

5. Other elements

- a. Indication:
- Red diodes visualization of the signals in the circuit 4 channels
- Yellow diodes—supply
 (one for 5 V, logic supply, and one for 12 V, step motor supply).
- b. Single-element LPF (capacitors) for smoothing the power supply pulsations.

Transistor switches and signal indicators

CONCLUSION

- I've got experience in assembling scheme by using soldering iron, solders and all other component use for assembling scheme.
- I recognized basic electronic components: resistor, capacitor, diode, transistor, some integrate circuits.
- I've got experience in working with basic electronics devices such as power supply, multi meter, oscilloscope, signal generator.
- I assembled several common scheme: voltage divider, RC filter, transistor switch and signal convertor.
- Using my acquired skilled, I assembled the Step Motor Control Unit device.

RADIO FREQUENCY

- INTRODUCTION
- Radio frquency generators are usually used as power sources and then power is amplified in klystrons. RF power is used in resonance particle accelerators.

RF IN THE ACCELERATOR TECHNOLOGY

- The eqiupments in the radio frequency laboratory was shown to me and usage of each equipment.
- RF equipments are ;
- RF Signal generator SRS SG384
- Selective micro voltmeter B6-9 (MD)
- Measuring line
- Short circuiting plug
- Matched load
- Waveguide

Radio frequency

Conclusion

- I have basic knowledge in equipments use in Radio frequency.
- I have the knowledge to identify the Radio frequency equipments.
- I have been able to use the equipments to observe and measure wave behaviour in the wave guide using different loads.

THANK YOU.