

Department: Science and Technology **REPUBLIC OF SOUTH AFRICA**

Neutron and gamma-ray spectrometry

Testing and characterization of BGO scintillation gamma-ray detectors

by Avuyile S. Bulala Supervisor: Ivan N. Ruskov Technical Assistant: Dimitar N. Grozdanov Frank Laboratory of Neutron Physics, JINR, Dubna

Outline

- Aim of the work and tasks to do
- Experimental setup
- Data acquisition and analysis
- Results and discussion
- Conclusion

Aim of the work

The aim of this work was to test and characterize
24 BGO gamma-ray detectors, using calibration
"point"- type sources (⁶⁰Co and ¹³⁷Cs).

Tasks to do

- \checkmark Setting the geometry of the experiment.
- ✓ Finding the optimal HV for BGO photomultiplier, changing the HV from 800V to 1450V with a step of 50V.
- ✓ Determining the energy resolution of all 24 BGO gamma-ray detectors.

Experimental setup

HV Power supply and Data acquisition system

Cont...

Data acquisition and analysis

ADCM is the compact and universal Digital Pulse Processing system for nuclear physics experiments.

ADCM16- LTC ■One PCI slot ■16 channels ■14-bit 100Mhz ≫3 modes &Time-driven &Single channel &Double coincidence

ADCM-16

16/32/48-channel digitizers, in the form of one or several PCI-E cards.

Sampling frequency

100 MHz

The digitized signals are transmitted via the PCI-E bus in the computer's memory, where all the data processing and storage takes place.

Maximum load of the system is ~ 10⁵ events per second

http://afi.jinr.ru/ADCM

http://afi.jinr.ru/ADCM16-LTC

In the experiment process

- voltage increment in each step = 50 V
- At each voltage, the amplitude spectrum was obtained
- Each measurement was saved on the server <u>daq@159.96.105.92</u> hard disk in the folder indata/test_pmt/energy/newBGO_VD_test/save for off-line analysis by ROMANA software

ROMANA Software

ROOT script for peak fitting

emacs@nf-106-23 (on nf-106-23) File Edit Options Buffers Tools C++ Help 🖂 🗶 🗖 Save 🗠 Undo 🐰 🔲 🖻 រាត់ Q #include <TCanvas.h> #include "TMath.h" #include <TFile.h> #include <TH1.h> #include <TF1.h> #include <TLegend.h> #include <TSpectrum.h> #include <TGraphErrors.h> #include <TMultiGraph.h> #include <TPaveStats.h> #include <TStyle.h> #include <TText.h> #include <TVirtualFitter.h> TCanvas *ccl = new TCanvas("ccl","ccl"); TText *Tt = new TText(); const int NFILE = 4; const int NPEAK = 4; const int MAXGAM = 22; char txt1 name[200]; char txt2 name[200]; char txt3 name[200]; char prn name[200]; char open_name[200]; char close name[200]; FILE *fp1; const char* NAME[NFILE]; const char* NAME area[NPEAK]; const char* NAME_resolution[NPEAK]; double Ch D F P[MAXGAM][NFILE][NPEAK]; double Ch_err_D_F_P[MAXGAM][NFILE][NPEAK]; TF1 *fit1qpol1; TF1 *fit1gpol2; TF1 *fit1gpol3; TF1 *fit1gpol4; TF1 *fit2gpol1; TF1 *fit2gpol2; TF1 *fit2qpol3; TF1 *fit2gpol4: TF1 *fit4qpol1; TF1 *fit4qpol2: TF1 *fit4gpol3; TF1 *fit4qpol4; TF1 *onegaus; TF1 *pol0;

-:**- mac Background.C Top L18 (C++/l Abbrev)

Amplitude spectra for D-23 at different high voltage

Channel-Energy calibration of D-23 at different high voltages

Results and discussions

• The energy resolution is obtained at FWHM of a single photo peak using this equation:

•
$$R = \frac{FWHM}{E_0} \times 100\%$$

- R is energy resolution.
- E₀ is related energy.

Resolution (%) and Amplitude as function of HV

⁶⁰Co amplitude

Resolution & amplitude for nDet at 800V

Conclusions

- 24 BGO gamma-ray detectors were tested and their energy resolution was determined using standard "point" calibration sources (¹³⁷Cs and ⁶⁰Co).
- For acquisition of the signals from BGO, a 32 channel computerized ADCM system was used.
- The digitized signals were analyzed by ROOT C++ software ROMANA.
- The photo-peak parameters were obtained by fitting Gaussian functions to the experimental data using ROOT C++ script.
- The obtained energy resolutions shows that the individual adjustment of the HV is needed for a single BGO gammaray detector.

Acknowledgement

- I would like to thank JINR for opening the invitation for us.
- DST, NRF and iThemba LABS for all the expenses of the trip.
- Many thanks goes to my project supervisor Dr. I.N Ruskov for endless assistence through this work.
- I also thank Mr. D. Grozdanov for technical assistence and result analysis.
- My S.A supervisors for allowing me to participate and gain such experience.
- Student practice 2017 group.

THANK YOU FOR YOUR ATTENTION!!

