Synthesis and crystalline structure of manganites

Project leader: Mihail-Liviu Craus^{1,2} ¹FLNP-JINR Dubna, Russia; ²INCDFT-IFT Iasi, Romania; Student: Takalani Cele South Africa

FRANK LABORATORY OF NEUTRON PHYSICS JOINT INSTITUTE FOR NUCLEAR RESEARCH

Laboratory for Accelerator

Based Sciences

university of south africa

Presentation Outline

- Aim and objectives
- Background
- Materials and Methods
- Results and Discussion
- Conclusion
- References

Aim and objectives

- To synthesize and study the properties of $La_{0.50}Pr_{0.20}Pb_{0.30-x}Sr_xMnO_3$ manganites.
- Specific Objectives:

•To calculate, prepare and obtain manganites corresponding to $La_{0.50}Pr_{0.20}Pb_{0.30-x}Sr_{x}MnO_{3}$ manganites, (x=0.0;0.05;0.10;0.15;0.20).

•To prove the structure of manganites.

•To obtain lattice parameters, average size of crystalline blocks and microstrains.

Background

AMnO₃ compounds having structures based on this architecture are called manganites.. A places are surrounded by 12 O anions and 8 Mn cations, while Mn cations (or other transitional metals) (sitting on the B places) are surrounded by 6 O anions and 8 A cations. Perovskites - ABO₃ A&B - metallic cations and O is an oxygen. A is a large cation, B is a small cation (e.g. Mn³⁺ and Mn⁴⁺) octahedrallycoordinated by oxygen.

A is occupied by large variety of rare earth elements (Nd, Eu, Sm etc.). Unit cell of manganite $La_{0.5}Pr_{0.2}Pb_{0.3-x}Sr_{x}MnO_{3}$

Features Cubic space group: • Pm-3m -Primitive lattice (P) -Mirror plane (m) -Centre of inversion and fold axis (-3) -Last mirror plane (m)

Unit cell of manganite La_{0.5}Pr_{0.2}Pb_{0.3-x}Sr_xMnO₃

• Features: -Distorted Perovskite -Rhombohedral space group: **R**-3 c -Primitive lattice (R) -Centre of inversion and threefold axis (-3) -Slide plane (c)

Materials and methods

• Preparation of La_{0.5}Pr_{0.2}Pb_{0.3-x}Sr_xMnO₃

Weighing of precursors

Mixing and milling of sample

Treatment at low temperature

Preliminary investigations

Grinding/ Polishing

Final sintering at high temperature

Synthesis and Measurement methods

Weighing balance

Results and discussion

Figure 1: Diffractograms of $La_{0.50}Pr_{0.20}Pb_{0.30-x}MnO_3$ when x = 0 (FullProf method). We obtained the position of the maxima, the average size of the crystalline blocks and the microstrains (red - observed XRD data; black – calculated XRD data; blue - the difference between the observed and calculated data).

Continues...

Figure 2: Diffractograms of $La_{0.50}Pr_{0.20}Pb_{0.30-x}MnO_3$ when x = 0.05 (FullProf method). We obtained the position of the maxima, the average size of the crystalline blocks and the microstrains

Continues...

Figure 3: Diffractograms of $La_{0.50}Pr_{0.20}Pb_{0.30-x}MnO_3$ when x = 0.2 (FullProf method). We obtained the position of the maxima, the average size of the crystalline blocks and the microstrains

Summary of crystal structure parameters Powder Cell method

Table 1: Variation of lattice constants (a, b, c), average size of crystal size and microstrain of

•	$La_{0.50}$	Pr _{0.20} F	b _{0.30-x} 8	Sr _x N	InO ₃
---	-------------	----------------------	-----------------------	-------------------	------------------

	Lattice constant		Crystal size	Microstrain	Space group
Х	$\mathbf{a} = \mathbf{b}$	С	D(Å)	3	
0.00	3.8954	3.8954	271	0.0020	Pm-3m
0.05	3.9069	3.9069	266	0.0018	Pm-3m
0.10	5.5254	13.4019	201	0.0012	R -3c
0.15	5.5390	13.4174	335	0.0010	R -3c
0.20	5.5398	13.4194	274	0.0011	R -3c

Conclusion

• Samples for $La_{0.5}Pr_{0.2}Pb_{0.3-x}Sr_xMnO_3$ changed the crystallographic structure from SG Pm-3m to R -3 c for x \geq 0.1. The unit cell volume and the lattice constants increased with the increase of Sr concentration due to the increase of Mn³⁺ concentration.

• The microstrains suddenly decreased with the changes of the crystallographic structure .

• The average size of mosaic blocks remain practically constant with different Sr concentration.

References

- 1) The Basic of Crystallography and Diffraction, C. Hammond, Oxford University Press, 2001
- 2) Modern Crystallography, B.K.Vainstein, Springer-Verlag, 1995
- Nanoscale Phase Separation and Colossal Magnetoresistance: The Physics of Manganites and Related Compounds, E. Dagotto, Springer-Verlag, 2003
- 4) http://www.ill.eu/sites/fullprof/
- 5) www.flnr.jinr.ru
- 6) Perovskiti Magnetorezistivi: sinteza, proprietati si aplicatii, Mihail-Liviu Craus, Nicoleta Cornei, Mihai Lozovan, Viorel Dobrea, Iassy:Alfa, 2008
- 7) An introduction to the program FullProf, Juan Rodríguez-Carvajal, Laboratoire Léon Brillouin (CEA-CNRS), CEA/Saclay, 91191 Gif sur Yvette Cedex, FRANCE

Acknowledgements

- I am indebted to Prof Mihail-Liviu Craus and Dr Vitali Turchenko for their guidance & patience.
- Thanks to the Director and staff of JINR for the nice organization of the student practice.
- Thanks to NRF/iThemba LABS for Funding
- Thanks to my fellow students from Egypt: Hawary, Mostafa, Sherifa, Ali and Alaa for their support.

PhD fellow, UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria, 0001, South Africa and iThemba LABS-National Research Foundation, PO Box 722, Somerset West, 7129, South Africa. Email address: tmadima@yahoo.com

ТНАМК YOU Спасибо