Joint Institute for Nuclear Research Flerov Laboratory of Nuclear Reactions University Center

STAGE 3 INTERNATIONAL STUDENT PRACTICE 2017

Joint Institute for Nuclear Research Flerov Laboratory of Nuclear Reactions University Center

PROJECT TITLE

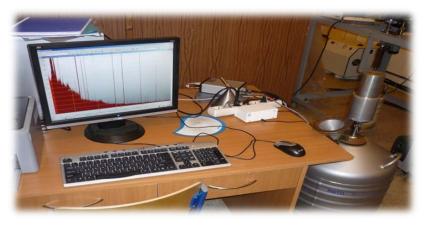
- HPGe detector for energy measurements of gamma-activity
 - Study of the operation principles of X-ray detectors
 - Moseley's Law in Action
 - Alpha Spectroscopy

SPEAKER

Mohamed A. Lasheen, Egypt **SUPERVISORS** K. Mendibae

S. Lukyanov

Introduction

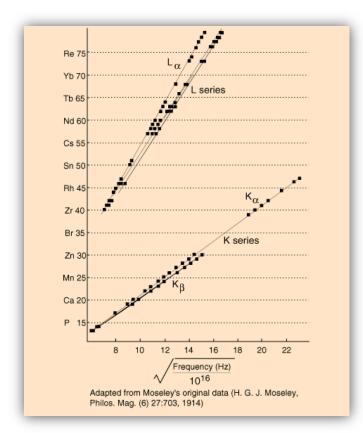

3 Types of semiconductor detectors

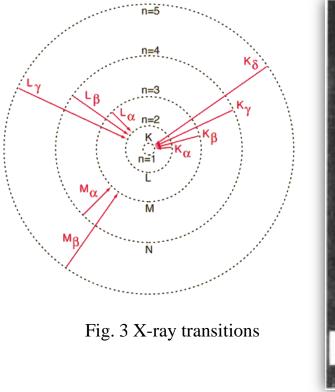
1. X-ray detector

3. Alpha Si spectroscopy detector

2. HPGe Gamma detector

History of Moseley's Law


Henry G.J. Moseley's 1887 - 1915


- In his early 20's, he measured and plotted x-ray frequencies for about 40 elements of the periodic table and was described by Rutherford as his most talented student.
- Based on his experiments, this is known as Moseley's law $E = a (Z - b)^2$
- where *a* and *b* are constants depending upon the particular spectral line, E is the energy of characteristic x-ray and Z atomic number.
- Moseley volunteered for combat duty during World War I and was killed in action at the age of 27 during the attack on the Gallipoli in the Dardenelles.

Moseley Plot of characteristic X-rays

• His data Moseley plot is still standard feature of physics textbooks (Figure 1).

 Photographic recording of Kα and Kβ x-ray emission lines for a range of elements (Figure 2).

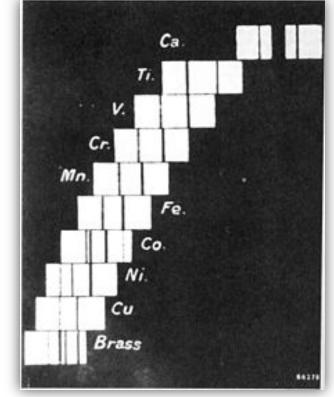


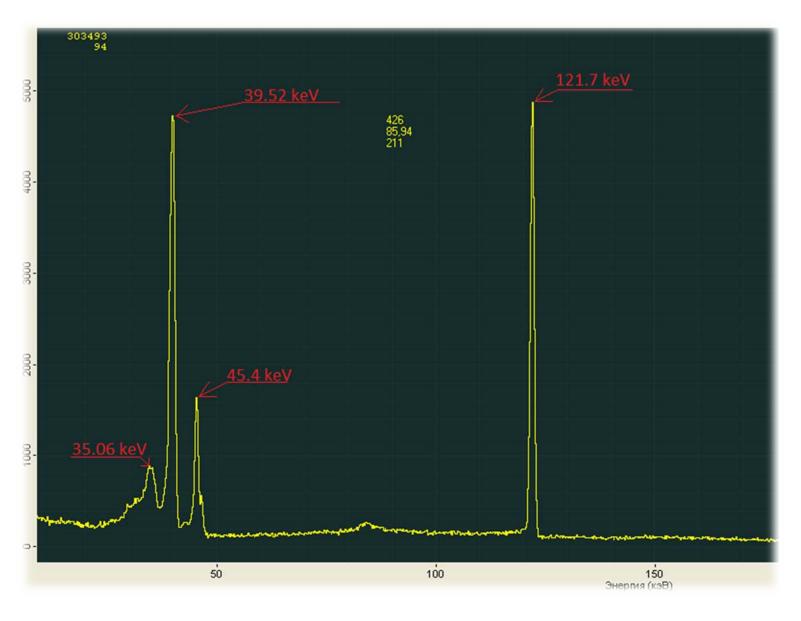
Fig. 2 Moseley step ladder of elements

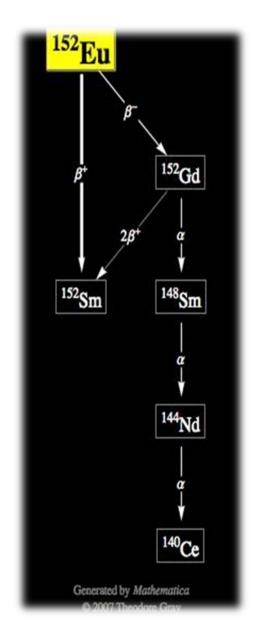
Fig. 1 Moseley plot of characteristic X-rays

Applications of Moseley's Law


- Any discrepancy in the order of the elements in the periodic table can be removed by Moseley's law by arranging the elements according to the atomic numbers and not according to the atomic weights.
- Moseley's law has led to the discovery of new elements like hafnium (Z=72), technetium (Z=43), rhenium (Z=75) etc.
- This law has been helpful in determining the atomic number of rare earths, thereby fixing their position in the periodic table.

General view of the X-ray spectrometer




Preparation for measurement

- 1. Cool the detector, fill the vessel with liquid nitrogen.
- 2. Place a calibration source in the detector.
- 3. Calibrate the energy X-ray spectrometer.

X-ray specter Eu-152

Moseley Law in action

Z	K	L
Am 95		13.946
Si 50	24.21	3.287
Ba 56	30.973	4.286
Mn 25	5.415	0.572
Y 39	14.165	1.806
Th 90		15.236
Cd 48	22.163	2.984
Cs 55	32.194	4.466
Eu 63	40.118	5.636

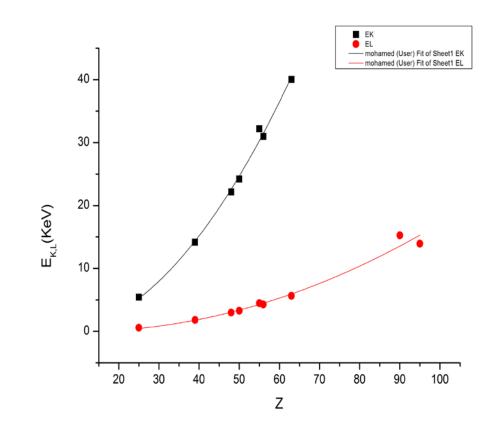
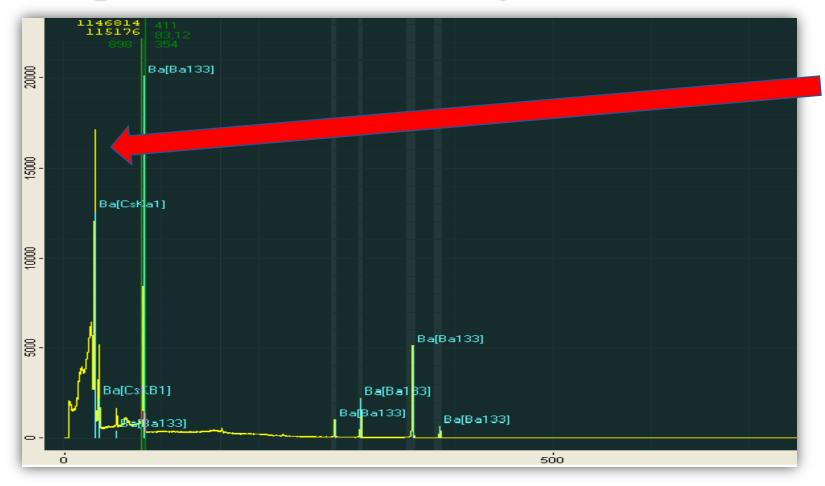
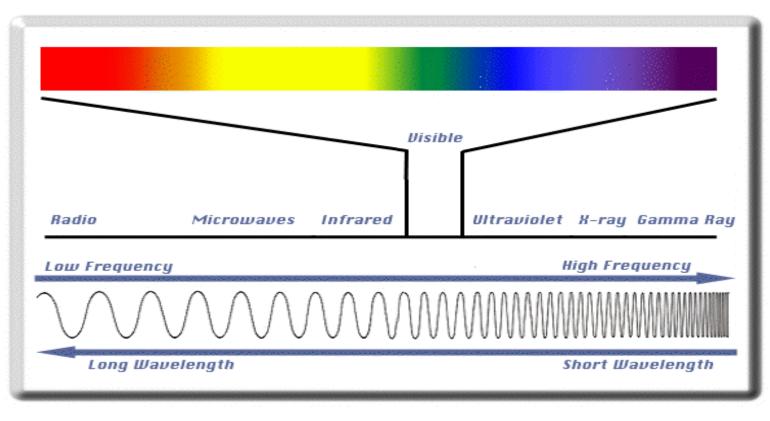
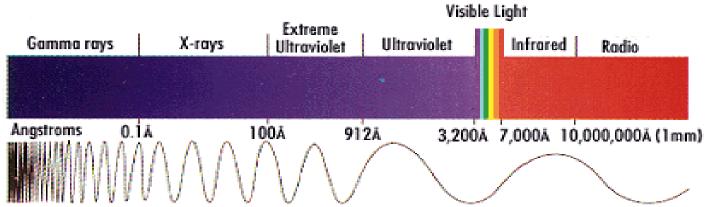



Table 1: Energies of $K(\alpha)$ and $K(\beta)$ transitions in keV and elements listed with increasing atomic number obtained from nuclear data.

Figure 4: $K(\alpha)$ and $K(\beta)$ lines fit to Moseley's Law. We confirm the functional form of the law but different values for the constants (a & b).

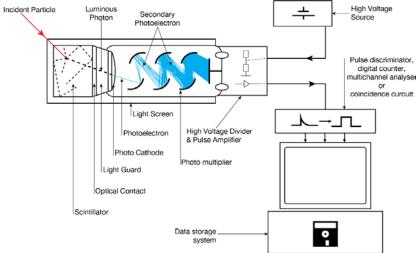
Spectrum from X-ray detector




Calculation and results.

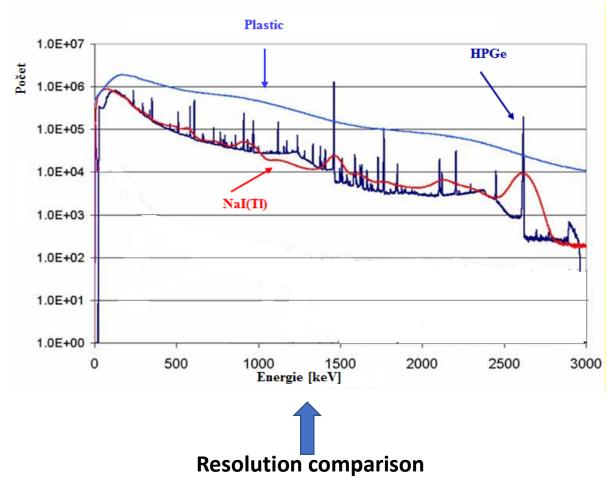
E = 30.64 keVA & B = constants obtained from K α Moseley's plot.

$$E = a (Z - b)^{2}$$
$$Z = \frac{\sqrt{E}}{a} + b$$
$$= \frac{\sqrt{30.64}}{0.0115} + 4.0137$$
$$= 55.60$$

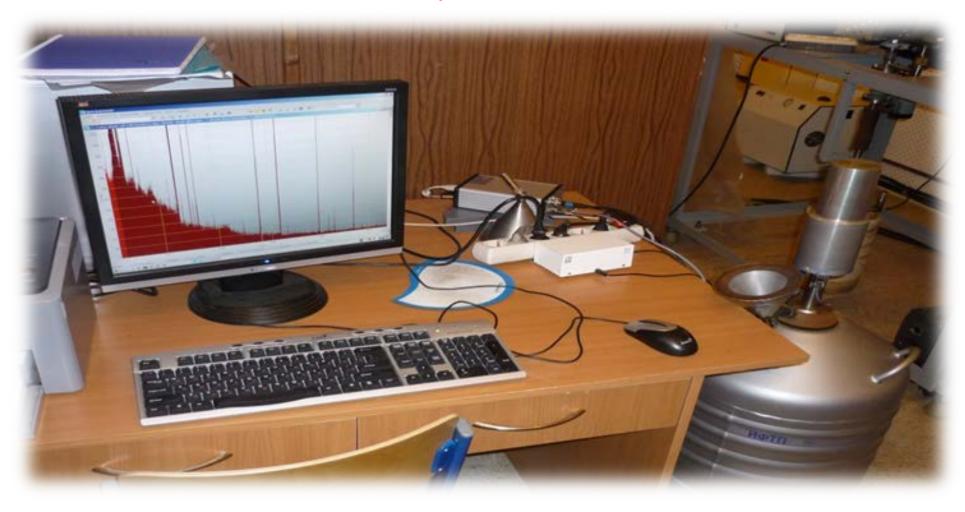

Nuclear data: Z = 55.60Element is Cs

Main detectors used for gamma

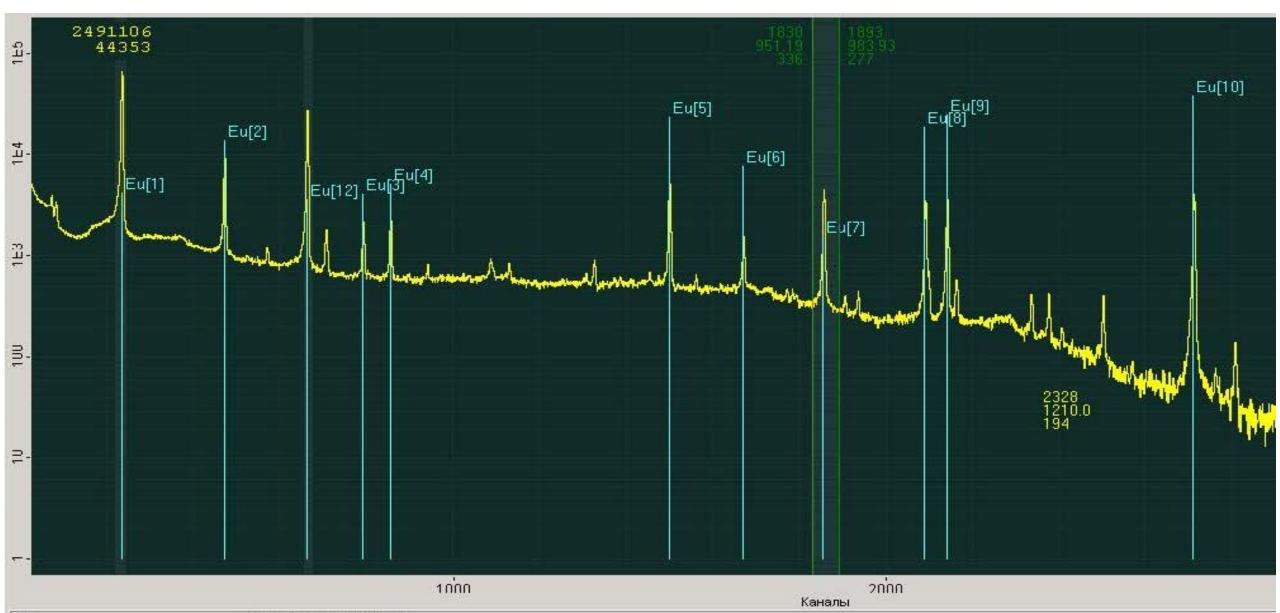
Scintillators detectors Organic (plastic, organic cristal, liquids) Inorganic (Nal(TI), Csl(TI), BaF2, BGO, etc)



HPGe detector, Si


Comparison of detectors

	Pure Ge-detector	Plastic Scintillator
	Price	Cheaper
Size	Restricted a few cm ³	No size limitation
Neutron-gamma separation	Not need	Need
Efficiency	Less 10 %	Large due to Z and size
Resolution	1 keV	Bad resolution



General view for HPGe Detector

To identify for Z and A

Gamma spectra calibration

Use of Nuclear Data Search

•

The Lund/LBNL Nuclear Data Search Version 2.0, February 1999

version 2.0, February 1999

S.Y.F. Chu¹, L.P. Ekström^{1,2} and R.B. Firestone¹

¹ LBNL, Berkeley, USA
² Department of Physics, Lund University, Sweden

WWW Table of Radioactive Isotopes

 Radiation search

 Nuclide search

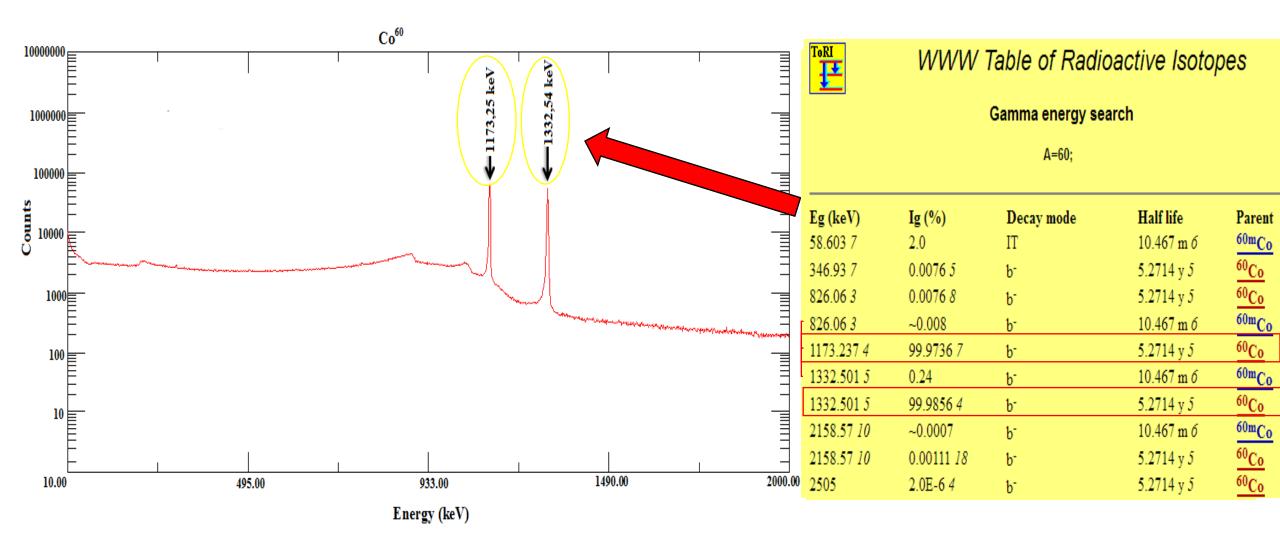

 Atomic data (X-rays and Auger electrons, very preliminary!)

 Periodic chart interface to the nuclides

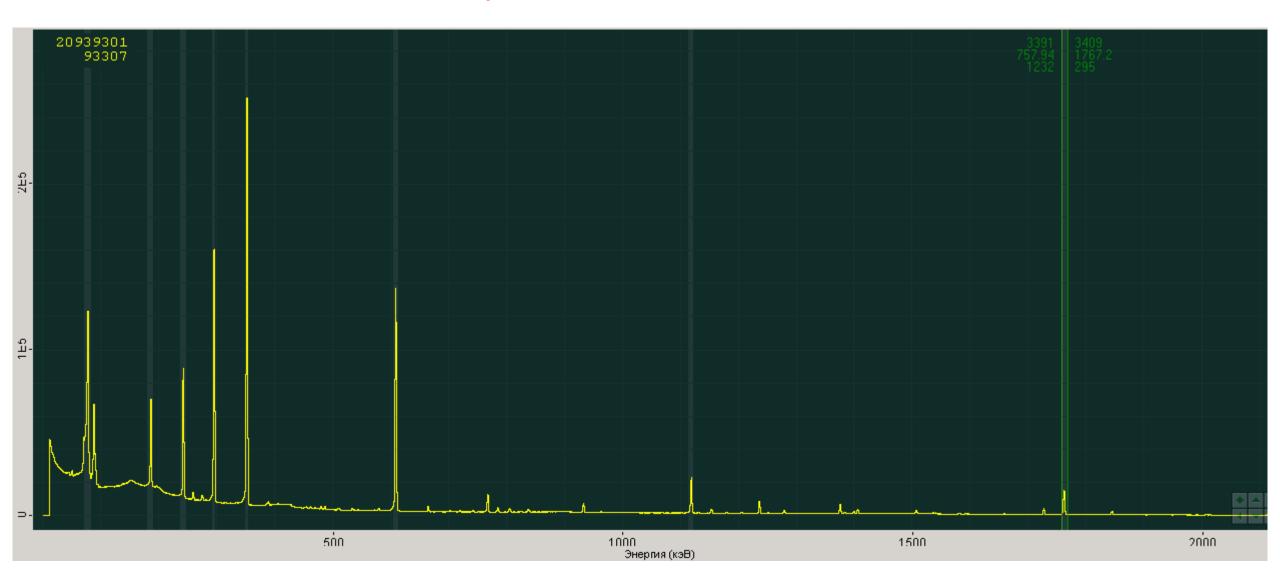
 Summary drawings for A=1-277 (PDF)

 Nuclear charts (PDF, 333 kbyte)

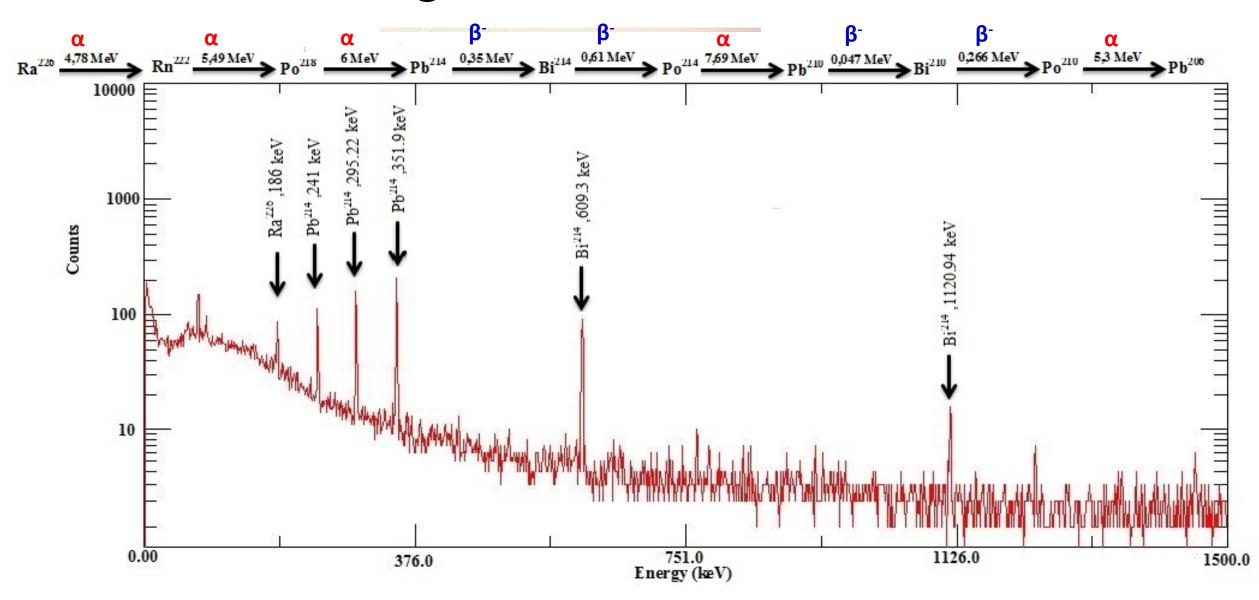
 Database status



The data are properly referenced as given in the database status panel. Please give your <u>feedback</u> on the usefulness of and suggestions on how to improve the Tol service.

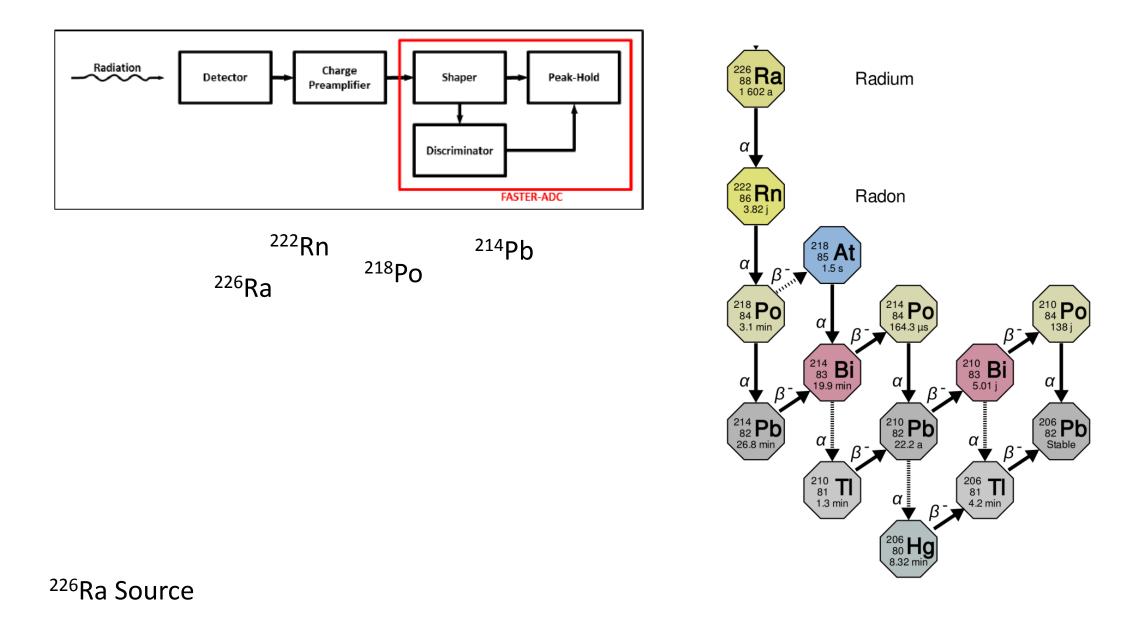

Help and instructions are given with a "pop-up help" system:

	WWW Table of Radioactive Isotopes							
Radiation search								
Energy:	± 1 keV Search							
	Type: 🔿 Alpha 💿 Gamma							
	Parent:							
T1/2:	S▼- S▼							
	Mass number: 152 - 152							
	Z: 63 or Element: Eu							
	N:							
Sort by:	Energy, Intensity O A, Z Reset form							
	Main page Nuclide search							

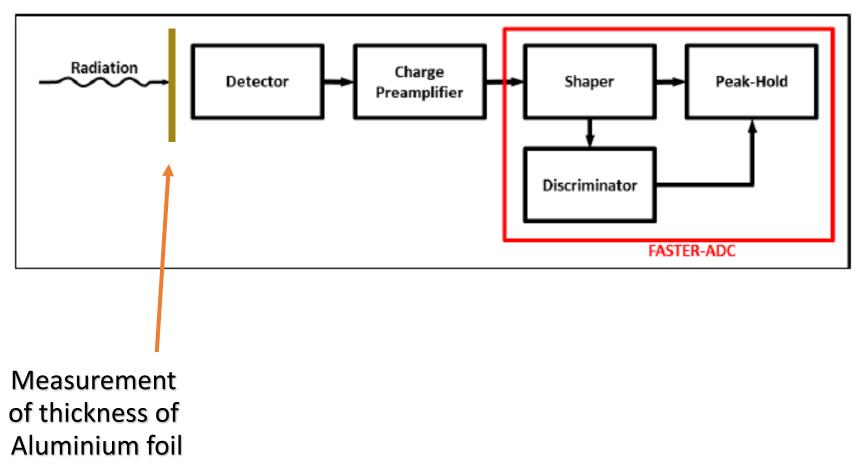

Gamma spectra of unknown source

Gamma spectra of 2-nd unknown source To Identify to know tow unknown sources

Disintegration chain of ²²⁶Ra



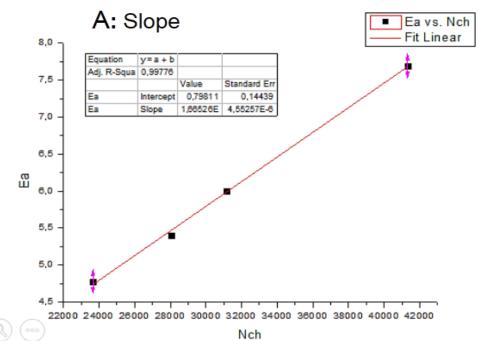
20	Pa221	Pa222	Pa223	Pa224	Pa225	Pa226	Pa227	Pa228	Pa229	Pa230	Pa231	Pa232	Pa233	Pa234	Pa235	Pa236	Pa237
Ũs	5.9 Us 9/2-	2.9 ms	6.5 ms	0.79 s	1.7 s	1.8 m	38.3 m (5/2-)	22 h 3+	1.50 d (5/2+)	17.4 d (2-)	32760 y 3/2-	1.31 d (2-)	26.967 d 3/2-	6.70 h 4+	24.5 m (3/2-)	9.1 m 1(-)	8.7 m (1/2+)
	742-	α	EC.a	α	α	EC,a	(5/2=) EC,a	EC.a	(3/2+) EC.a	(2-) ΕC.β.α	3/2- 0.sf	EC,β-	342- β-	β:sf *	(372-) β-	β-	B- 6
19	u Th220	Th221	Th222	Th223	 Th224	Th225	Th226	Th227	Th228	Th229	Th230	Th231	Th232	Th233	Th234	Th235	Th236
Üś	9.7 Us 0+	1.68 ms (7/2+)	2.8 ms 0+	0.60 s (5/2)+	1.05 s 0+	8.72 m (3/2)+	30.57 m 0+	18.72 d (1/2+)	1.9116 y 0+	7340 y 5/2+	7.538E+4 y 0+	25.52 h 5/2+	1.405E10 y 0+	22.3 m 1/2+	24.10 d 0+	7.1 m (1/2+)	37.5 m 0+
	EC.a	α (//2+)	α			EC,a	a	α	a	α	a.sf	β-,α	a.sf	B-	β-	(1/2+) В-	β- f
18	Ac219	Ac220	Ac221	Ac222	Ac223	Ac224	Ac225	Ac226	Ac227	Ac228	Ac229	Ac230	Ac231	Ac232	Ac233	Ac234	Ac235
Us	11.8 Us 9/2-	26.4 ms (3-)	52 ms (3/2-)	5.0 s 1-	2.10 m (5/2-)	2.78 h 0-	10.0 d (3/2-)	29.37 h (1)	21.773 y 3/2-	6.15 h 3+	62.7 m (3/2+)	122 s (1+)	7.5 m (1/2+)	119 s (1+)	145 s (1/2+)	44 s	
	EC.a	a	α	ŧ EC.α		EC,β.α,			5,0	g	ß	ß	ß	ß	β-	ß	
17	Ra218	Ra219	Ra220	Ra221	Ra222	Ra223	Ra224	Ra225	Ra226	Ra227 42.2 m	Ra228	Ra229	Ra230	Ra231	Ra232	Ra233	Ra234
Js +)	25.6 Us 0+	10 ms (7/2)+	18 ms 0+	28 s 5/2+	38.0 s 0+	11.435 d 3/2+	3.66 d 0+	1.9 d /2+	1600 y 0+	42.2 m 3/2-	5.75 y 0+	4.0 m 5/2(+)	93 m 0+	103 s (7/2-,1/2+)	250 s 0+	30 s	30 s 0+
	α	α	a	α	α, ¹⁴ C	a, ¹⁴ C	а, ¹⁴ С	β	<u>ь</u> нс	β-	ß	ß	β·	β·	β-	ß	β-
16	Fr217	Fr218	Fr219	Fr220	Fr221	Fr222	Fr223	Fr224	Fr225	Fr226	Fr227	Fr228	Fr229	Fr230	Fr231	Fr232	1 1 1
Us)	22 Us 9/2-	1.0 ms 1-	20 ms 9/2-	27.4 s 1+	4.9 m 5/2-	14.2 m 2-	21.8 m 3/2(-)	3.33 vi	4.0 m 3/2-	49 s 1-	2.47 m 1/2+	38 s 2-	50 s	19.1 s	17_5 s	5 s	46
	α	* α	α	β-,α	α	β-	β.,α	ß	β·	β-	ß	ß	β·	β·	β-	ß	
15 Us	Rn216 45 Us	Rn217 0.54 ms	Rn218 35 ms	Rn219 3.96 s	Rn220 55.6 s	Rn221 25 m	Rn222 3.8235 d	Rn223 23.2 m	Rn224 107 m	Rn225 4.5 m	Rn226 7.4 m	Rn227 22.5 s	Rn228 65 s		1 / /		
+	43 US 0+	9/2+	0+	5/2+	0+	7/2(+)	0+	7/2	0+	7/2-	0+		0+		144	-	
	α	α	α	α		β.,α		β-,α	β-	β-	ß	β·	β·				
14 Ns	At215 0.10 ms	At216 0.30 ms	At217 32.3 ms	At218	At219 56 s	At228 3.71 m	At221 2.3 m	At222 54 s	At223 59 s		1 10		1 10				
	9/2-	1-	9/2-								140		142				
			-		β.α	fizie	β·	β-	β.a								
13 Js	Po214 164.3 Us	Po215 1.781 ms	Po216 0.145 s	Po217 10 s	Po218 3.10 m		126	-	120)							
÷	0+	9/2+	0+		0+		136)	138)							
1.2		β;α D:214			β.α	J											
12	Bi213 45.59 m	Bi214 19.9 m	Bi215 7.6 m	Bi216 3.6 m	121												
•	9/2-	1-		(1-)	1⁄34												
	β-, α Pb211	β.п Pb212	₿- Pb213					224	6			310		214			
	36.1 m 10.64 h 10.2 m 26.8 m																
ß.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																
Tb.	<u>lb.</u> lb. lb.																


Alpha-spectroscopy Silicon detector

Alpha-spectroscopy Silicon detector

Silicon detector

Mechanical way: measurement of thickness of al-foil by balance weighting


L= 28,9 cm H= 7,8 cm M= 0,5287 g S= L*H= 225,42 cm² D= M/S= 2,345 mg/cm² ρ= 2698,4 mg/cm³ **D/ρ= 8,69 μm**

Measurement of thickness of Al-foil (d)

📮 LISE++ [Noname]	
File Options Experiment Settings Physics Models	Calculations Utilities 1D-Plot 2D-Plot Databases Help
🖀 📴 📓 🥵 Set-Up 🚳 🥍 🕂 🕇	$\blacksquare \blacksquare $
S I1_slits slits E -100 R +100 E D2 Brho 35CI 35CI S I2_slits slits Slits	A Element Z
-29.5 # +29.5 34S	35 S 36 S 37 S 38 S Energy Remain. E-Loss Ut (signal) 0.23 X3 MeV/u MeV MeV <q> Thickness 0.00046577 mg/cm2</q>
Al Density 2.702 calculate reactions in this material Z.702 Z Element Mass I I I I I I I I I I I	State Dimension Angle 0 0 6.5731 1.1169 1.71 0 0 6.5731 0.00 0 6.5731 0.00 Gas g/cm2 & mm 0 degrees 0 0 6.5731 0.00 Thickness at 0 degrees Effective Thickness 0 8.53 micron 2.304806 mg/cm2 Set the spectrometer after Atoms / cm2 Atoms / cm2 Atoms / cm2 Thickness 0 0 0 0
Compound dictionary OK Cancel	Image: This block using changes 5.14e+19 Image: Calculation method of the calculation method o

Εα	N _{ch}	N _{ch} Foil	(N _{ch} -N _{ch} Foil)*A ¹	d(µm)²	error	weighting(µm)
4,78	2,365E+004	1,354E+004	1,66777593	8,75		
5,49	2,805E+004	1,915E+004	1,4681707	8,52		
6,00	3,115E+004	2,283E+004	1,37249216	8,75		
7,69	4,132E+004	3,456E+004	1,11514988	8,53		
				8,63	± 0,13	8.69

Nuclear way Measurement of thickness of Al-foil (d)

¹ Origin 8 Software ² Lise++ Software

Calculations of error

$$\left(\frac{\delta x}{x}\right) = \sqrt{\sigma^2 + \left(\frac{\Delta E}{E}\right)^2}$$

$$\sigma = \sqrt{\frac{(d_1 - \bar{d})^2 + (d_2 - \bar{d})^2 + (d_3 - \bar{d})^2 + (d_4 - \bar{d})^2}{4}}$$

$$\bar{d} = \frac{d_1 + d_2 + d_3 + d_4}{4}$$

THANK YOU FOR YOUR ATTENTION.

