

JOINT INSTITUTE FOR NUCLEAR RESEARCH

Precision investigation of modern crystalline materials by neutron diffraction method

By : Mostafa R. Abukhadra Asmaa Mohamed

Frank Laboratory of Neutron Physics (FLNP)

Supervisors:

- PhD. Ivan Bobrikov, researcher, Frank Laboratory of Neutron Physics, Condensed Matter Department
- PhD. Sergei Sumnikov, researcher, Frank Laboratory of Neutron Physics, Condensed Matter Department

Agenda

- 1. Introduction
- 2. Why Neutron Diffraction
- 3. Neutron Diffraction & X-ray Diffraction
- 4. Idea of Neutron Diffraction
- 5. Neutron Diffraction in JINR
- 6. Full Prof analysis
- 7. Conclusion
- 8. Recommendation

1. Introduction

2. Why Neutron Diffraction

Problems we faced during our work:

Environ Chem Lett DOI 10.1007/s10311-017-0658-7

ORIGINAL PAPER

Novel bentonite/zeolite-NaP composite efficiently removes methylene blue and Congo red dyes

Mohamed Shaban¹[©] · Mostafa R. Abukhadra^{1,2} · M. G. Shahien² · Suzan S. Ibrahim³

Received: 14 April 2017/Accepted: 26 July 2017 © Springer International Publishing AG 2017

Journal of Environmental Management 204 (2017) 189-199

Research article

Photocatalytic removal of Congo red dye using MCM-48/Ni $_2O_3$ composite synthesized based on silica gel extracted from rice husk ash; fabrication and application

Mohamed Shaban ^a, Mostafa R. Abukhadra ^{a, b, *}, Ahmed Hamd ^{a, c}, Ragab R. Amin ^c, Ahmed Abdel Khalek ^d

^a Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt ^b Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt

⁶ Geology Department, Faculty of Science, Beni-suef University, Beni-suef, Egypt
⁶ Basic Science Department, Faculty of Engineering, Nahda University Beni-Suef (NUB), Beni Suef, Egypt

^d Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt

3. XRD Vs neutron Diffraction

- It can be determine atomic and magnetic structures
- Low interaction with matters
- High penetration within the sample
- Give deep information about the interior of the sample and can mapping the internal stress
- Give valuable data about the lattice displacement
- Give information about static or dynamic disorder

4. Idea of Neutron Diffraction

5. Neutron Diffraction in JINR

6. Full prof analysis

neutron

Standard sample – LaB₆

Low resolution MnO

High resolution MnO at T = 290 K

Mno_stand

High resolution MnO at T =15k

	MNO low res. 15k	MNO (XRD) 15k	MNO high res. 15k
Space group	R -3 m		
Unit cell parameters, a (Å)	3.14885 ± 0.0001	3.142355 ± 0.00008	3.148688 ± 0.00011
Unit cell parameters, c (Å)	7.608667 ± 0.002	7.604208 ± 0.00026	7.596878 ± 0.00018
Magnetic moment	3.90 ± 0.06	NO	4.408 ± 0.05

Conclusion

Neutron diffraction method are efficient technique in investigation of atomic and magnetic structure of advanced materials

Questions