




# Neutron Activation Analysis for Life Sciences

#### **INTERNATIONAL STUDENTS' PRACTICE 2017, JINR, DUBNA**

**Frank Laboratory of Neutron Physics** 

**The Sector of Neutron Activation Analysis and Applied Research** 

#### Mohamed El-Henawey Mansoura University








#### Fatma Said Ain-shams University







JOINT INSTITUTE FOR NUCLEAR RESEARCH

Yasmine Sarhan Minufiya University

> Fatma Shafiek Minufiya University

Said Moawad Egyptian Atomic Energy Authority

> Moushira Saleh Assiut University



Reem Mohammed Ain-shams University

### Contents



JOINT INSTITUTE FOR NUCLEAR RESEARCH

#### **1- Introduction and history**

#### **2- Physical concepts**

- a. NAA
- b. Different types of NAA

#### **3- Sampling and sample preparation**

- a. Sample collection
- b. Sample preparations
- c. Irradiation process (REGATA)

#### 4- Data processing and analyzing

- a. Genie2000
- b. Concentration program
- c. Data plotting
- 5- Advantages and limitations of NAA
- 6- General outcomes
- a. Joint projects with Egypt
- b. Outcomes



# **1. Introduction**

## **Founder of FLNP**

#### **FRANK LABORATORY OF NEUTRON PHYSICS** JOINT INSTITUTE FOR NUCLEAR RESEARCH 1956



- Ilrja Mikhailovich Frank (1908-1990)
- The Nobel Prize winner in Physics
- Stalin prize in 1946 and 1953 and the USSR state prize in 1971.





## What is NAA?



JOINT INSTITUTE FOR NUCLEAR RESEARCH

Neutron activation analysis is an isotope specific analytical technique for the qualitative and quantitative determination of elemental content.

#### ➢ NAA was discovered in 1936



G. Hevesy



H. Levi



# 2. Physical concepts

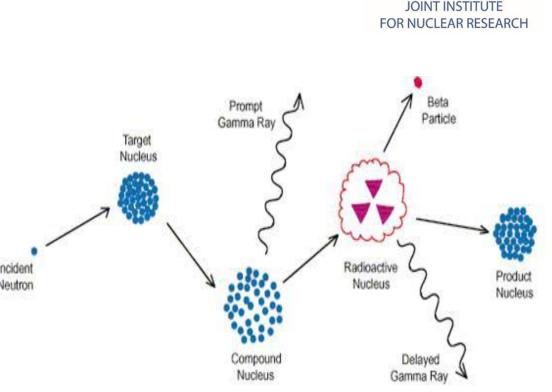


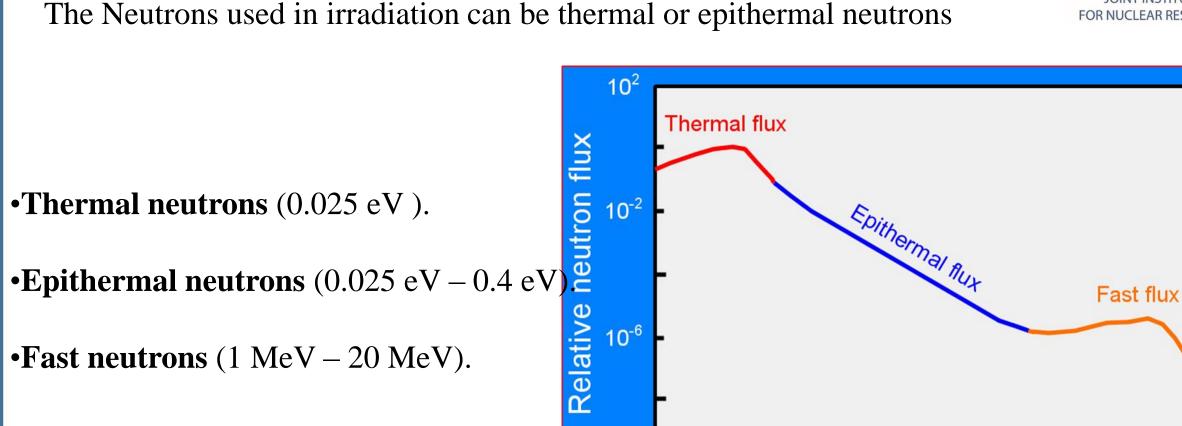


# **Neutron activation analysis (NAA) :** is a non destructive nuclear process used for

1- determining the concentrations of elements in a vast amount of materials.

2- determining the elemental composition of materials


### **NAA Principle**


NAA relies on irradiation by neutrons so that the treated sample will be excites then it de-excites emitting gamma-rays (prompt). The resulted sample is radioactive so *it emits Negative Beta and Gamma ray to turn into stable isotope*.

#### The second Gamma ray is our purpose.

It allows the precise identification and quantification of the elements, above all of the trace elements in the sample.

The study spectra of the emissions of the radioactive sample allows the identification of the element. By knowing the Energy of Gamma ray we can determine the element and number of Gamma rays emitted is correlated to the number of elements in the sample.





 $10^{-1}$ 

10<sup>-10</sup>

 $10^{-3}$ 



JOINT INSTITUTE FOR NUCLEAR RESEARCH

10<sup>3</sup>

Neutron energy (eV)

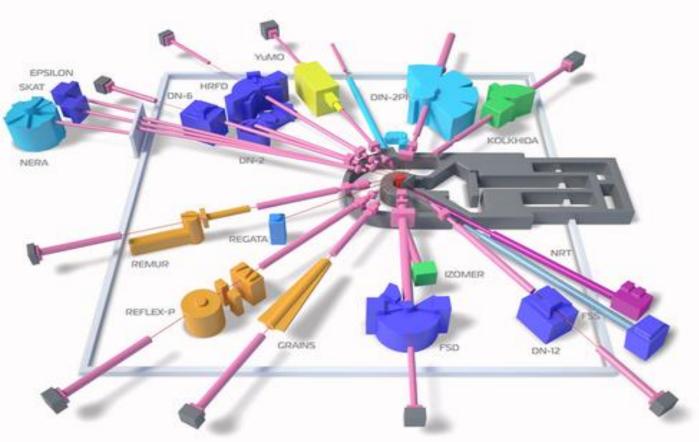
 $10^{1}$ 

10<sup>5</sup>

10<sup>7</sup>

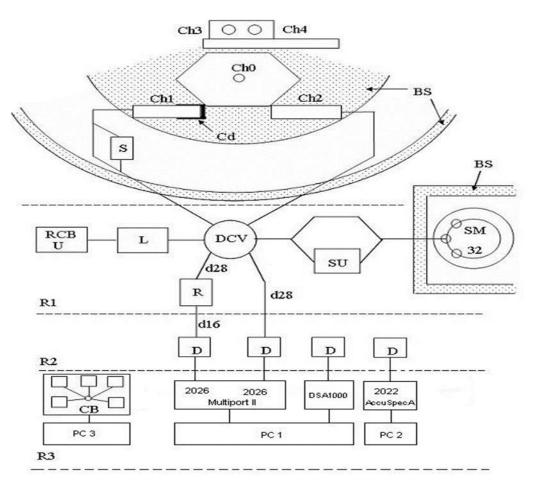
#### **NAA Principle**

#### **Elements that may be analyzed via INAA include:**

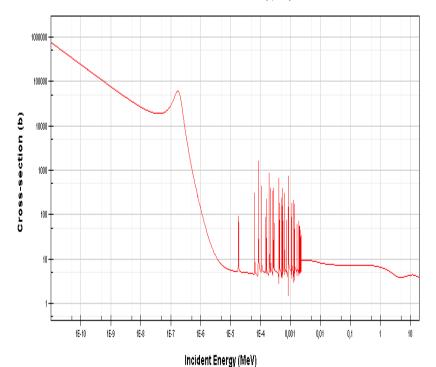



| Η  |    |      |    |    |    |    |    |    |    |    |    |    |    |    |    |    | He |
|----|----|------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Li | Be |      |    |    |    |    |    |    |    |    |    | В  | С  | Ν  | 0  | F  | Ne |
| Na | Mg |      |    |    |    |    |    |    |    |    |    | ΑΙ | Si | Ρ  | S  | CI | Ar |
| Κ  | Ca | Sc   | Ti | V  | Cr | Mn | Fe | Со | Ni | Си | Zn | Ga | Ge | As | Se | Br | Kr |
| Rb | Sr | Υ    | Zr | Nb | Мо | Тс | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Те |    | Xe |
| Cs | Ba | La*  | Hf | Та | W  | Re | Os | lr | Pt | Au | Hg | ΤI | Pb | Bi | Ро | At | Rn |
| Fr | Ra | Ac** |    |    |    |    |    |    |    |    |    |    | Rf | Db | Sg | Bh | Hs |
|    |    |      |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|    | *  | Ce   | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu |    |    |
|    | ** | Th   | Ра | U  | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lw |    |    |

#### **The IBR-2 Reactor**




- \* Average power 2 MW
- ✤ PuO<sub>2</sub> fuel
- **♦** <sup>252</sup>Cf
- ✤ Neutron density flux ~ 10<sup>16</sup> n/cm<sup>2</sup>/s
- ✤ 9 cycles a year
- **\*** Each cycle = 12 days




#### **REGATA :**

Channel 1 and 2 are connected directly to the reactor core. Ch1 : Cd screening .



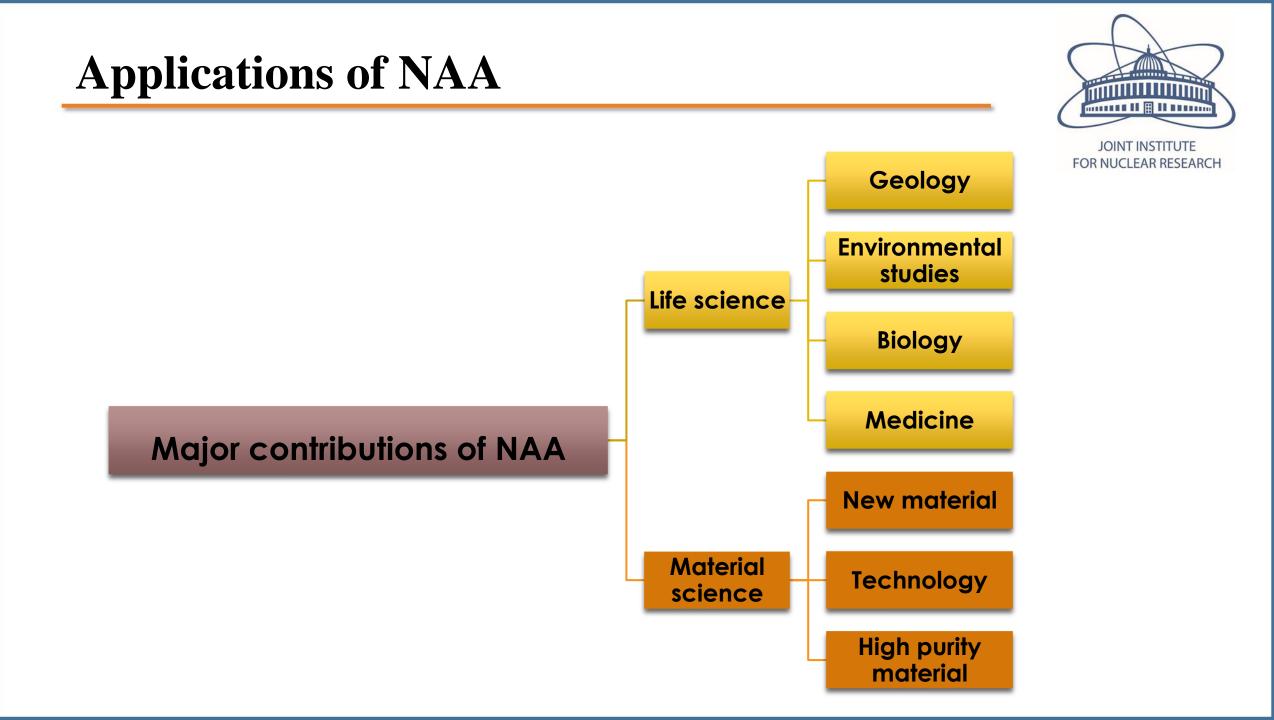
Incident neutron data / JEFF-3.1 / Cd113 / MT=1 : (n,total) / Cross section





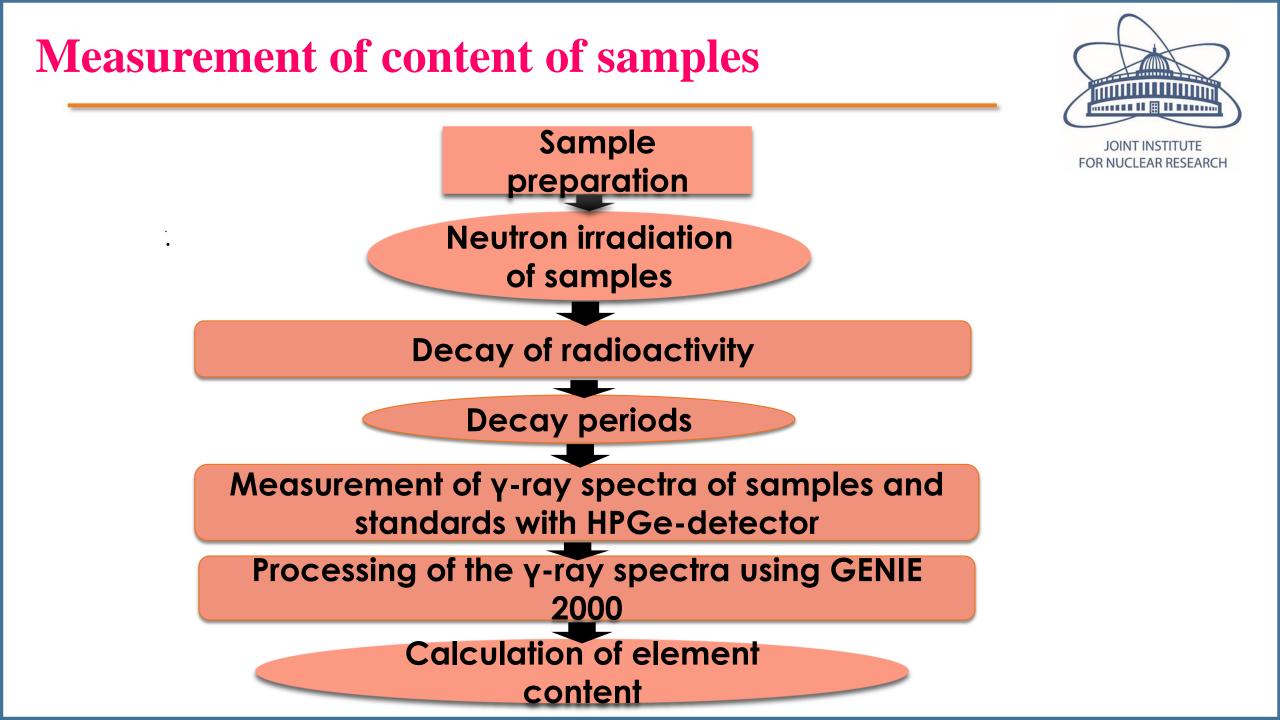
# **Different Types of NAA**




FOR NUCLEAR RESEARCH

**Destructive (radiochemical):** 

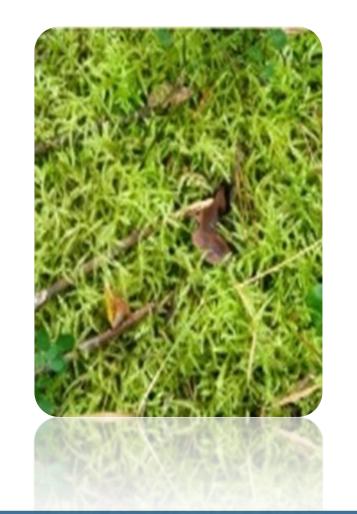
The resulting radioactive sample is chemically decomposed and the elements are chemically separated


#### Non-destructive (instrumental):

The resulting radioactive sample is kept intact and the radionuclides are determined, taking advantage of the differences in decay rates via measurements at different decay intervals






# **3. Sampling and sample preparation**



# **Types of samples and sample Collection**



- > Enviromental samples
- > Geological samples
- > Biological samples
- Liquids
- > Foodstuffs, etc





#### **Environmental Sampling & Preparation**



JOINT INSTITUTE FOR NUCLEAR RESEARCH

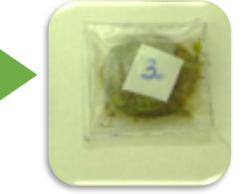


Chemical laboratory of the dept. NAA and Applied Research and some equipment for sample preparation.



- ➤ Temperature range 30-300°C;
- > Optimal temperature for NAA  $40^{\circ}$ C;
- Samples are dried till constant weight.

# pelletizing






### **Weighting and Packing**



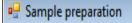
JOINT INSTITUTE FOR NUCLEAR RESEARCH



### Standards packed for short irradiation

#### For long irradiation

For short irradiation








### **Sample Preparation**

Country-Client-Year-Set ID-Set index



JOINT INSTITUTE FOR NUCLEAR RESEARCH

- • X

 $\Leftrightarrow$ 

| Sample<br>ID | Client<br>sample<br>ID | Cleaning                | Drying | Evaporation                | Freeze drying                     | Homogenizing                     | Pelletization             | Fragmentation | Weight<br>SLI, g         | Weight<br>LLI, g | Sample<br>preparation<br>date | Maked =                     |
|--------------|------------------------|-------------------------|--------|----------------------------|-----------------------------------|----------------------------------|---------------------------|---------------|--------------------------|------------------|-------------------------------|-----------------------------|
| 01           | 01                     |                         |        |                            |                                   |                                  | <b>V</b>                  |               | 0,3014                   | 0,3027           | 13.09.2017                    | Zinicovsca                  |
| 02           | 02                     |                         |        |                            |                                   |                                  | <b>V</b>                  |               | 0,3072                   | 0,3132           | 13.09.2017                    | Zinicovsca                  |
| 03           | 03                     |                         |        |                            |                                   |                                  | <b>V</b>                  |               | 0,3109                   | 0,2908           | 13.09.2017                    | Zinicovsca                  |
| 04           | 04                     |                         |        |                            |                                   |                                  | <b>V</b>                  |               | 0,3029 0,3018 13.09.2017 |                  | 13.09.2017                    | Zinicovsca                  |
| 05           | 05                     |                         |        |                            |                                   |                                  | <b>V</b>                  |               | 0,3037                   | 0,2817           | 13.09.2017                    | Zinicovsca                  |
| 06           | 06                     |                         |        |                            |                                   |                                  | <b>V</b>                  |               | 0,3081                   | 0,3066           | 13.09.2017                    | Zinicovscai                 |
| 07           | 07                     |                         |        |                            |                                   |                                  | <b>V</b>                  |               | 0,3061                   | 0,2966           | 13.09.2017                    | Zinicovscai                 |
| 08           | 08                     |                         |        |                            |                                   |                                  | <b>V</b>                  |               | 0,3036                   | 0,3106           | 13.09.2017                    | Zinicovscai                 |
| •            | Ì                      | Ì                       | Î      |                            |                                   |                                  |                           | 1             |                          | 1                |                               | 4                           |
|              |                        | ck selected<br>'Drying' |        | ck selected<br>vaporation' | Check selected<br>'Freeze Drying' | Check selected<br>'Homogenizing' | Check sele<br>'Pelletizat |               | < selected<br>nentation' |                  | eights from file              | heck selected<br>'Maked by' |
|              |                        |                         |        | ſ                          | Select all rows                   | Save                             | Cla                       | ose           |                          |                  |                               |                             |

#### **Irradiation of Samples**



JOINT INSTITUTE FOR NUCLEAR RESEARCH





#### **Types of containers**

**Boxes for re-packing samples after irradiation** 



# 4. Data processing and analyzing

# **Data processing and analyzing**



The accumulated spectra were analyzed for the isotopes radioactivity (μCi/g) for NUL using Genie 2000 by Canberra.

≻In general, a full computer spectrum analysis will consist of three phases:

(1) Set up data libraries for energy, peak width and efficiency calibration and for sample analysis.

(2) Use spectra of reference sources to generate energy, peak width and efficiency calibration data files.

(3) Analyze sample spectra by referring to those data libraries and calibration files.

#### **Screenshot of Spectrum Analysis by Genie**



| Δ | Δ | Δ |
|---|---|---|
| D |   | U |
| V | U | U |

| a - 5002180 CN |                           |                    |             |                              |                   |                         |
|----------------|---------------------------|--------------------|-------------|------------------------------|-------------------|-------------------------|
| A Calibrate    | Display Analyze           |                    |             |                              |                   |                         |
|                |                           | 1 Hu 124 Q         |             | 3343                         |                   |                         |
| Channel: 1     | 958 : 782.6 k             |                    | unts: 263   | Preset: 900/                 | 00.00             |                         |
| quire          |                           |                    |             |                              |                   | VFS = 16K               |
| Stop           |                           |                    |             |                              |                   |                         |
| and On         |                           |                    |             |                              |                   |                         |
| Clear          |                           |                    |             |                              |                   |                         |
|                |                           |                    |             |                              |                   |                         |
|                |                           |                    |             |                              |                   |                         |
| mma - TEST SPC | Chirt                     |                    |             | -                            |                   |                         |
|                | e Display Analy:          | - Edit Ontin       | Determine   | Liste                        |                   |                         |
|                |                           |                    |             |                              |                   |                         |
|                |                           |                    | <u> </u>    |                              |                   |                         |
| Sample         | Title.                    | GEN                | TE-PC Spe   | ctrum No. 2                  |                   |                         |
|                |                           |                    |             | AMFILES\STDLIB.              | NLB               |                         |
| nuorrao        | - marging o               |                    |             |                              |                   |                         |
|                |                           | . IDEN             | NTIFIED NU  | UCLIDES                      |                   |                         |
|                |                           |                    |             |                              |                   |                         |
| Nuclide        | Id                        | Energy             | Yield       | Activity                     | Activity          |                         |
| Name C         | Confidence                | (keV)              | (응)         | (uCi/Unit)                   | Uncertainty       |                         |
|                |                           |                    | 10.07       | 0.0766071011                 | 1. 5005051040     |                         |
| K-40           |                           | 460.81*            | 10.67       | 2.07669E+011                 |                   |                         |
| 0-57           |                           | 122.06*            | 85.51       | 4.62033E+001                 |                   |                         |
| 0-60           |                           | 136.48*<br>173.22* | 100.00      | 3.89136E+001                 |                   |                         |
| 0-60           |                           | 332.49*            | 100.00      | 1.08663E+003                 |                   |                         |
| KR-85          |                           | 513.99*            | 0.43        | 1.05537E+003                 |                   |                         |
| SR-85          |                           | 513.99*            | 99.27       | 3.07903E+005<br>5.87540E+001 |                   |                         |
| 2-88           |                           | 898.02*            | 93.40       | 1.33658E+002                 |                   |                         |
| -00            |                           | 836.01*            | 99.38       | 1.01443E+002                 |                   | =                       |
| D-109          | 1.000                     | 88.03*             | 3.72        | 1.40574E+002                 |                   |                         |
| SN-113         |                           | 255.12             | 1.93        | 1.40574E+003                 | 1.49526E+002      |                         |
| SN-113         |                           | 391.69*            | 64.90       | 8.83145E+001                 | 7 291095+000      |                         |
| s-137          |                           | 661.65*            | 85.12       | 6.63019E+003                 |                   |                         |
| CE-139         |                           | 165.85*            | 80.35       | 3.50101E+001                 |                   |                         |
| IG-203         |                           | 279.19*            | 77.30       | 3.19099E+001                 |                   |                         |
|                |                           |                    |             |                              |                   |                         |
| * = E          | Energy line               | found in           | n the spec  | ctrum.                       |                   |                         |
| @ = F          | Energy line               | not used           | d for Weig  | ghted Mean Acti              | vity              |                         |
|                | y Toleranc                |                    | .000 keV    |                              |                   |                         |
| Nucli          | de confide                | nce inde:          | x thresho   | 1d = 0.30                    |                   |                         |
| Error          | s quoted a                | t 1.000            | sigma       |                              |                   |                         |
|                |                           |                    |             |                              |                   |                         |
| cerferenc      | ce Correcte               | d Activit          | ty Report   | 12/22/2011                   | 9:51:52 AM Page 2 |                         |
|                |                           |                    |             |                              |                   |                         |
| •••••••        | · • • • • • • • • • • • • | ••••••••••         | ••••••••••• | *******                      | *****             |                         |
|                |                           |                    |             |                              |                   | -                       |
|                |                           |                    |             |                              |                   | Execution Status: readv |
| press F1       |                           |                    |             |                              |                   |                         |

#### **Screenshot of CalcConc Program**



• A developed software **CalcConc** at the Neutron activation sector was used to FOR NUCLEAR RESEARCH calculate the content of the elements in (mg/kg).

| Concentration - 5.8 (ed. TMO)                                                             |                      |                        | _                      |                   |      |     |
|-------------------------------------------------------------------------------------------|----------------------|------------------------|------------------------|-------------------|------|-----|
| Recalculation of SRMs activity                                                            | Group standard       | Concentration          | Table of nuclides      | Clear form        | Help |     |
| Recalculation of SRMs activity                                                            |                      |                        |                        |                   |      |     |
| Base file of SRM flux monitor activity                                                    | y: not selected      |                        |                        |                   |      |     |
| File of SRM flux monitor activity: not                                                    |                      |                        |                        |                   |      |     |
| File(s) of SRM activity: not selected                                                     |                      |                        |                        |                   |      |     |
|                                                                                           | Rec                  | calculate and save \$  | SRMs activity          |                   |      |     |
| Group standard                                                                            |                      |                        |                        |                   |      |     |
| Files of SRM activity: not selected                                                       |                      |                        |                        |                   |      |     |
|                                                                                           | Create               | e a summary table o    | f SRMs activity        |                   |      |     |
| Data for a table of SRMs check                                                            |                      |                        |                        |                   |      |     |
| <ul> <li>Calculated uncertainty</li> </ul>                                                | Z-scores             | Reference              | e uncertainty          |                   |      |     |
| File of group standard: not selected Concentration File(s) of analyzed sample activity: r | Calculate SRM(s) on  | a group standard ar    | nd save a table of SRM | s check           |      |     |
| File of group standard: not selected                                                      |                      |                        |                        |                   |      |     |
| Base file of SRM flux monitor activit                                                     | y: not selected      |                        |                        |                   |      |     |
| File of sample flux monitor activity: r                                                   | not selected         |                        |                        |                   |      |     |
| Deselect flux moni                                                                        | tors file            |                        | Coefficient of ne      | utrons flux chang | je   | 1.0 |
| Source of SLI data SLI-1                                                                  | and SLI-2            | -                      | Systematic error       | %:                |      | 0   |
|                                                                                           | Ca                   | Iculate and save co    | ncentrations           |                   |      |     |
| Files of elements concentration of a                                                      | nalyzed samples: not | selected               |                        |                   |      |     |
|                                                                                           | Create an int        | ermediate table of e   | lements concentration  |                   |      |     |
|                                                                                           | Create a             | a final table of eleme | nts concentration      |                   |      |     |

#### **Data plotting**

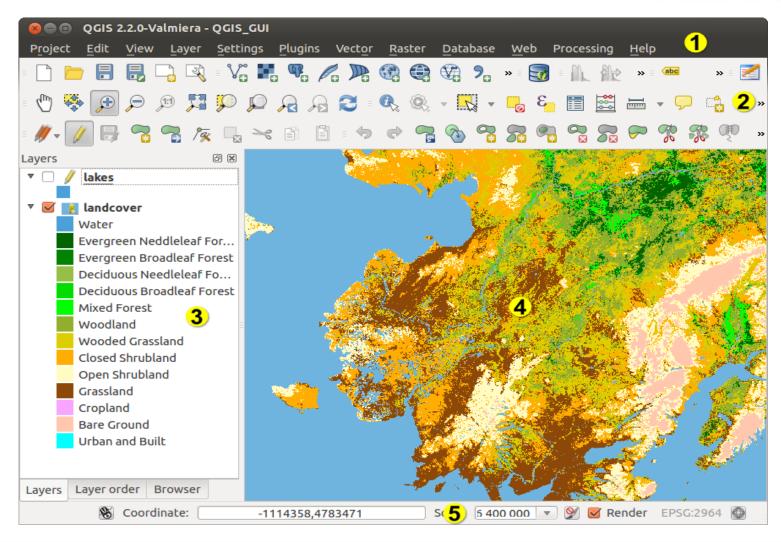
- Geographic information system (GIS) is a system designed to capture, store, manipulate, analyze, manage, and present spatial or geographic data.
- Maps in computer.

# • Do you use GIS

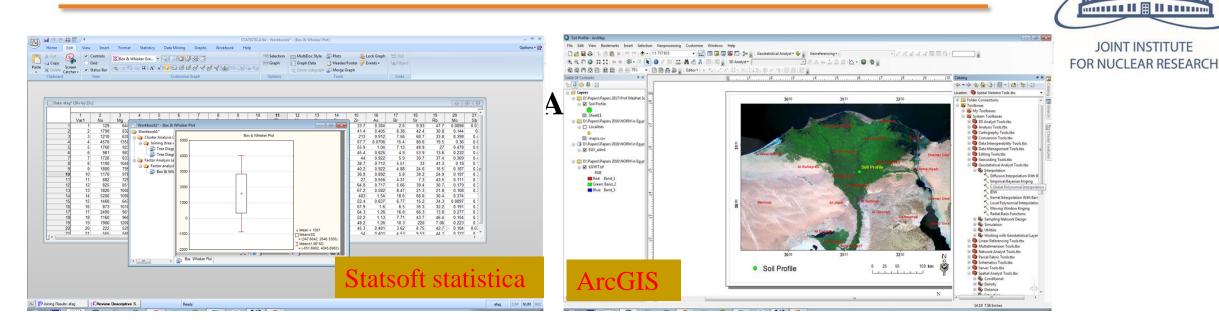


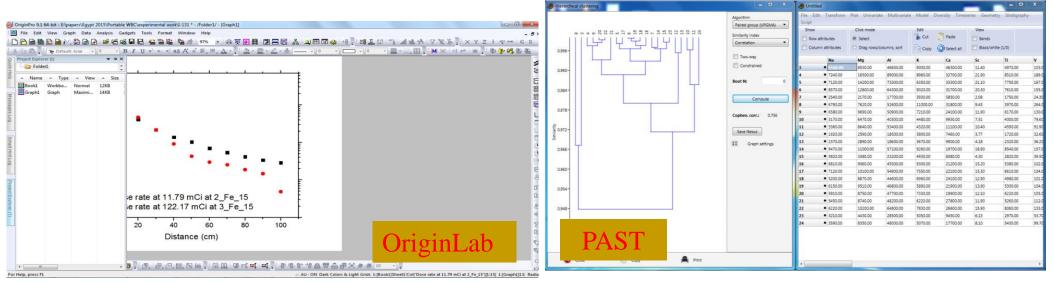


### QGIS




JOINT INSTITUTE FOR NUCLEAR RESEARCH


Spatial distribution maps

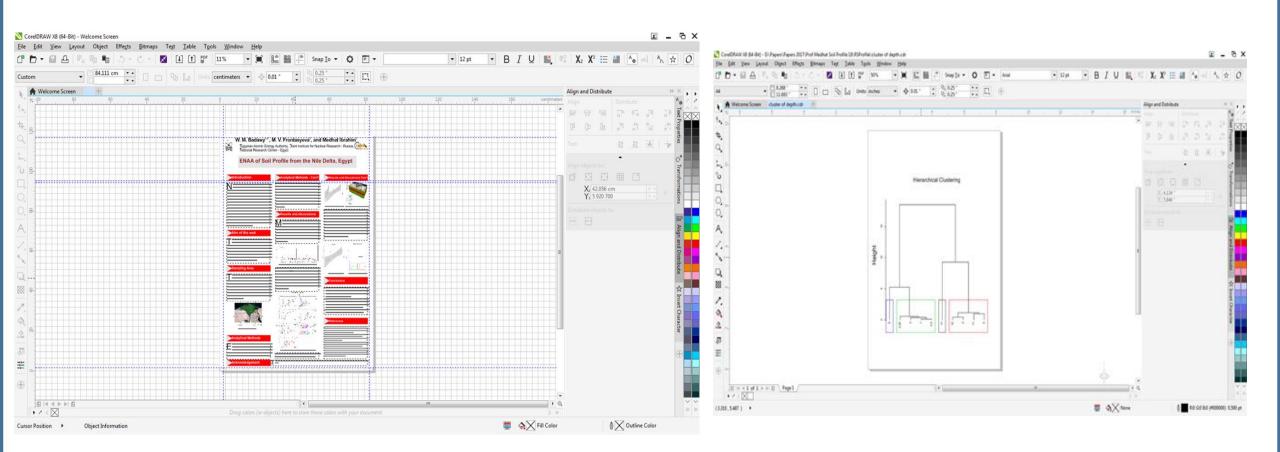

- Advantage Big user base for free open-source
- Limitation

No 3D



#### **Used Software Packages in Analysis**






#### CorelDraw



JOINT INSTITUTE FOR NUCLEAR RESEARCH

#### **\***Graphic management and posters





# 5. Advantages and limitations

# Advantages of using INAA for trace element analysis

- It is a multi-element technique capable of determining approximately 65 elements in many types of materials.
- It is non-destructive and therefore, does not suffer from the errors associated with yield determinations.
- ★ It has very high sensitivities for most of the elements that can be determined by INAA – most detection limits range from ~0.05 to ~50 ppm (≤ 1 ppb for some high-purity materials).
- ✤ It is highly precise and accurate.



- ✤ Irradiated samples by NAA will remain radioactive for a period of time.
- \* Radioactive samples require special handle and disposal protocols .
- ✤ The need for neutron source as reactor or neutron generator .



# 6. General outcomes

### Joint projects with Egypt



- The current joint projects with Egypt represented in:
- 1. Assessment of the environmental situation in the basin of the Nile River using nuclear and related analytical techniques
- 2. Environmental studies in Egypt using neutron activation analysis and other analytical techniques

### Joint projects with Egypt



JOINT INSTITUTE FOR NUCLEAR RESEARCH

• The Nile River was key to the development of the Egyptian civilization and still represent the most important source for the life on Egypt land.

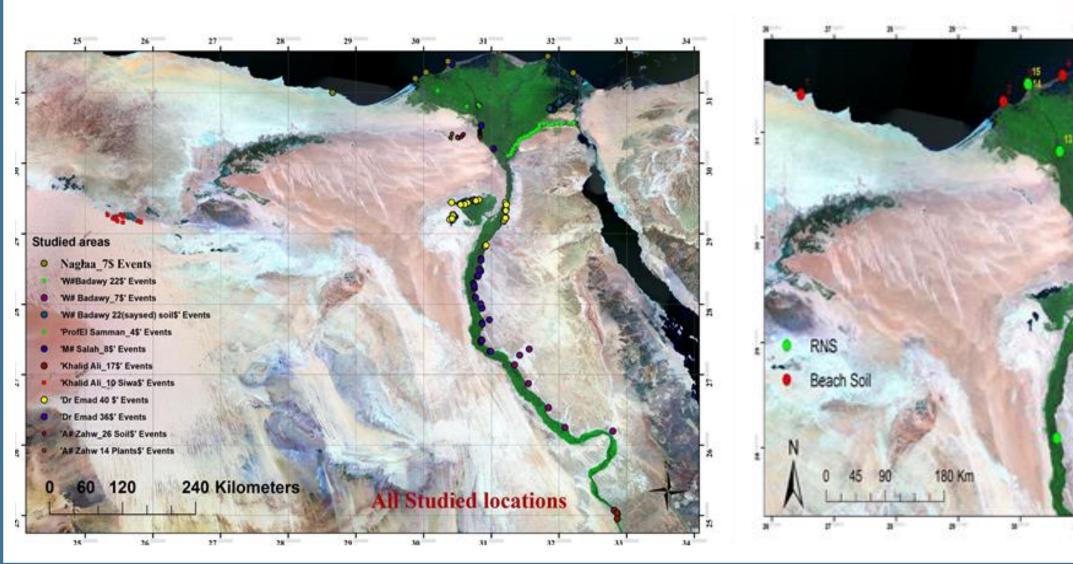
• Recently, Civilization progress has led to the pollution of the Nile River and hence the Delta land.





## The goals of joint projects with Egypt




JOINT INSTITUTE FOR NUCLEAR RESEARCH

• Joint projects with Egypt aim to:

- 1. Determination of pollution sources in the basin of Nile river and its Delta.
- 2. Determination of the content in mg/kg the minor, major and trace elements in soil and sediment as a monitor of pollution.
- 3. Base-line information for constructing an ecological map of Egypt.
- 4. Predictions and actions.

#### Study locations





# General outcomes



- 1. Biomonitoring of atmospheric deposition of heavy metals and other elements.
- 2. Controlling the quality and safety of foodstuffs.
- 3. Assessment of different ecosystems and their impact on human health.

Cont.,



• So, the team members have recognized the Steps to perform these operations which include:

Sample collection
 Sample preparations
 Irradiation process (REGATA)
 Data processing and analyzing

**Capacity building** 



Now, after this practice, the students have become able to transfer this technology to Egypt to serve scientific, medical and environmental sectors, which, in turn, are working to establish a bright future.

### Acknowledgement

- Prof. Marina Frontasyeva.
- Assoc. Prof. Wael M. Badawy. •
- Inga Zinicovscaia.
- All the members in the sector of NAA- FLNP JINR. •
- Julia Rybachuk & Elizabeth Budennaya



