

Amal Ebrahiem Ismail

Central Metallurgical R& D Institute

Mahmoud Abd El-aal

South Valley University

Egypt

The 9th Summer School in JINR

Frank Laboratory of Neutron Physics

Joint Institute For Nuclear Research (JINR)

Under supervision of

Dr. Alexander Kobzev

Dr. Miroslav Kulik

- 1. Aim of the project
- 2. Description of Van de Graff accelerator
- 2.1 The Experimental Chamber for analytical methods in Frank Laboratory
- 3. Basic Physical Concepts of RBS method
- 3.1 Kinematic Factor K
- **3.2 Scattering Cross Section**
- 4. Rutherford Backscattering Spectroscopy (RBS)
- 5. Elastic Recoil Detection Analysis (ERD)
- 6. Nuclear Reaction Analysis (NRA)

AIM OF PROJECT

Analysis of contents and depth distribution of different elements in the near surface layers of solids using:

- Rutherford Backscattering Spectrometry (RBS)
- Elastic Recoil Detection (ERD)
- Nuclear Reaction Analysis (NRA)

VAN DE GRAFF ACCELERATOR

- We used as a particle accelerator, an ion source is located inside the high-voltage terminal.
- Ions are accelerated from the source to the target by the electric voltage between the high-voltage supply and ground.

VAN DE GRAFF ACCELERATOR IN FRANK LABORATORY

- Produces the beams of helium ions and protons with energy in regions 0.9- 3.5 MeV
- Helium intensity less than 10 μA and proton intensity up to 30 μA.
- > The accelerator belt moves at 20 m/s
- The accelerator is placed in a tank under pressure of 10 atmospheres of dry nitrogen.
- > The accelerator EG-5 has six beam lines.

Basic Physical Concepts

1. Energy transfer from a projectile to a target nucleus in an elastic two body collision.

2. It is assumed of such a two-body collision. This leads to the concept of scattering cross section and to the capability of quantitative analysis of atomic composition.

3. The energy loss of an atom moving through a dense medium. This process leads to the concept of *energy straggling* and to a limitation in the ultimate mass and depth resolution of backscattering spectrometry.

KINEMATIC FACTOR K

0

$$\frac{1}{2}M_{1}v_{0}^{2} = \frac{1}{2}M_{1}v_{1}^{2} + \frac{1}{2}M_{2}v_{2}^{2},$$

$$M_{1}v_{0} = M_{1}v_{1}\cos\theta + M_{2}v_{2}\cos\phi,$$

$$0 = M_{1}v_{1}\sin\theta - M_{2}v_{2}\sin\phi.$$

$$\mathbf{K} = \mathbf{E}_1 / \mathbf{E}_0$$

$$K_{M_2} = \left[\frac{(M_2^2 - M_1^2 \sin^2 \theta)^{1/2} + M_1 \cos \theta}{M_2 + M_1}\right]^2$$

Scattering Cross Section

 $A = \sigma \Omega \cdot Q \cdot Nt$

$$\begin{pmatrix} \text{number of} \\ \text{detected particles} \end{pmatrix} = \sigma \Omega \cdot \begin{pmatrix} \text{total number of} \\ \text{incident particles} \end{pmatrix} \cdot \begin{pmatrix} \text{number of target} \\ \text{atoms per unit area} \end{pmatrix}$$

$$\frac{d\sigma}{d\Omega} = \left(\frac{Z_1 Z_2 e^2}{4E}\right)^2 \frac{4}{\sin^4 \theta} \frac{\left\{\left[1 - \left(\frac{M_1}{M_2}\sin\theta\right)^2\right]^{1/2} + \cos\theta\right\}^2}{\left[1 - \left(\frac{M_1}{M_2}\sin\theta\right)^2\right]^{1/2}}$$

Rutherford Backscattering Spectrometry (RBS)

The use of **RBS** is to provide information on concentration vs depth for different elements in a near surface layer samples.

A beam of 2-3 MeV He⁺ ions are directed at different angles on a sample surface.

The ion loses energy due to collision with electrons.

The ion will scatter elastically with the atomic nucleus and lead to a kinematic factor K.

 700
 experimental

 600
 o

 500
 o

 400
 o

Number of layer	Name	of element	Thickness	
	name	concentration	(10 ¹⁵ atoms/cm ²)	
	Si	0.325	2220	
	0	0.675	3330	
2	Si	1.000	8500	

Number of layer	Name of element	concentration	Thickness 10 ¹⁵ atoms/cm ²	
	0	0.66	100	
	Si	0.34		
2	Ag	1.00	50	
3	Si	1.00	1500	
4	Au	1.00	50	
5	0	0.70	550	
	Si	0.30		
6	Pt	1.00	300	

Elastic Recoil Detection Analysis (ERDA)

- He ions collide with a sample and atoms (H,D) are ejected from the sample.
- The incident energetic ions typically have MeV of energy, enough to kick out the atoms being struck.
- For ERD, the mass of the incident particle must be greater than that of the target nucleus.

						Thickness
Number of layer		elements				
	Name	н	С	Si	Ba	
1	Concentration	0.125	0.614	0.01	0.25	340
2	Name	C		Si	Ba	
	Concentration	0.709		0.01	0.28	2350
3	Name	С		Si	Βα	
	Concentration	0.25	c).1	065	910
4	Name	C			Ba	
	Concentration	0.03		0.97		8000

 \bigcirc

0

Number of layer	Name of element					Thickness (10 ¹⁵ atoms/cm ²)		
1	name	н		D	С		Si	700
	concentration	0.12	C	0.30	0.08		0.50	700
2	name	н			C Si		Si	50
	concentration	0.14 0		0.	36	0.50		
3	name	С		Si		51	20000	
	concentration	0.25		0.75		75		

0

nm

1.2

These methods are non-destructive techniques to study materials

- The used methods allow the determination of depth distribution and concentration from hydrogen to heavy elements.
- The spectra calculations and model comparisons was executed in SIMNRA software tool, in which good agreement was achieved for RBS and ERD experiments.
- Furthermore, the depth resolution is done near to few nm range for these methods.
- The sensitivity for heavy elements is of the order 10¹⁴ atoms/cm²

