

Transport phenomena and magnetic crystalline structure of manganites

Project Coordinator Prof. Dr. Mihail Liviu CRAUS

Team Work

- Ali Abdelaziem
- Mahmoud Hawary
- Sherifa El hady
- Mostafa Marzouk
- Alaa El-Sadieque

Cairo University, Egypt Zewail City, Egypt Misr University, Egypt Helwan University, Egypt Sohag university, Egypt

A cations (such as, La, Sr, Ca, Pb, etc.) rare earth and alkaline earth
 B cations (such as, Ti, Cr, Ni, Fe, Co, Zr, Mn, etc.) transition metals

Manganites

R rare-earth cation

A alkali or alkaline earth cation

 O^{2-}

- ✓ Structural analysis of manganites using XRD
- Investigate the magnetic and transport phenomena of manganites using VSM and four point probe

X-Ray diffraction

JOINT INSTITUTE

JINR

$La_{0.5}Pr_{0.2}Pb_{0.3-x}Sr_{x}MnO3$ Preparation

OINT INSTITUTE

Software Programs

- ✓ Full prof suite code
 ✓ Cristalographica
 ✓ Celerf3
 ✓ Powder cell
- ✓ MolCal

 $La_{0.5}Pr_{0.2}Pb_{0.1}Sr_{0.2}MnO3$

X	SG	a=b (A°)	c (A°)	V (A ³)	D (A°)	ϵ
0.00	Pm-3m	3.887	3.887	58.759	323	0.0018
0.05	Pm-3m	3.889	3.889	58.818	327	0.0004
0.10	R-3c	5.522	13.371	349.645	518	0.0006
0.15	R-3c	5.514	13.355	353.338	534	0.0005
0.20	R-3c	5.524	13.384	355.701	469	0.0007

X=0.00, 0.05 Cubic crystal system X=0.1, 0.15, 0.20 Rhombohedral crystal system

Unit cell for cubic crystal system (Pm-3m)

Unit cell for Rhombohedral crystal system (R-3c)

JOINT INSTITUTE

FOR NUCLEAR RESEARCH

Magnetic measurements using (VSM)

 $\boldsymbol{\sigma} = \boldsymbol{k} \frac{\boldsymbol{U}}{\boldsymbol{m}}$

($\boldsymbol{\sigma}$) specific magnetization

(U) voltage drop across the coils(m) sample weight

(k) constant

Electrical measurements

(four sonde method)

(1) Dewar with liquid N_2 (2)Vacuum pump (3)Evacuated tube (4)Cu rod (5)Sample (6)Current source (7)Voltmeter

Molar magnetization vs temperature

Curie temperature (Tc)

Conductivity models

\checkmark Thermal Activation model (T_A)

$$\mathbf{R} = \boldsymbol{R}_{0} \boldsymbol{e}^{\left(\frac{\boldsymbol{E}_{a}}{\boldsymbol{K}\boldsymbol{T}}\right)} \quad \text{(Viret et al.)}$$

✓ Single magnon process

$$\mathbf{R} = \mathbf{R}_{0} + \mathbf{A} \mathbf{T}^{2}$$

Resistance measurements (H=0)

Transport model at higher T and (H=0)

Transport model at low T and (H=0)

 $E_a = 0.029 \text{ eV}$

E_a=0.038 eV (H= 5000 Oe)

Resistance measurements (H=5000 Oe)

Resistance measurements at different x

X=0.05

X=0.1

JOINT INSTITUTE

RESEARCH

Magnetic and electrical parameters

×	T _c [k]	$\mathbf{T}_{\mathbf{IM},extrinsic}(\mathbf{K})$	T _{IM, intrinsic} [K]	E _a [eV]
0.00	224	216		0.051
0.05	226	239	293	0.026
0.15	315	210	303	0.029
0.20	200	241		0.033

JOINT INSTITUTE

FOR NUCLEAR RESEARCH

- ✓ La_{0.5}Pr_{0.2}Pb_{0.3-x}Sr_xMnO3 have synthesized by ceramic method and the structures were confirmed by XRD for all x values
- ✓ Cubic structure with space group (Pm-3m) was observed for x=0.0 and x=0.05
- Anombohedral structure with space group (R-3C) for x>0.05
 Another structure with space group (R-3C) for x>0.05
- ✓ Average size of the crystalline blocks is smaller for cubic structure and larger for hexagonal structure. The microstrains have smaller values for hexagonal structure.

 \checkmark Manganite sample behave as metals for temperature lower than T_{MI} and semiconductor for temperature higher than T_{MI}

- ✓ At low temperature the samples support a transition from the ferromagnetic to spin-glass state, which influences the transport properties of the samples
- ✓ Activation energy value have a weak dependence on the chemical composition or the structure of the samples. A dependence of the activation energy on the treatment conditions (field magnetic cooling, zero field magnetic cooling, heating in magnetic field, heating without magnetic field) was observed

Acknowledgment

Joint Institute of Nuclear Research (JINR)

Prof. Dr. Mihail-Liviu Craus Ms. Julia Rybachuk Ms. Elizabeth Budennaya

Academy of Scientific Research and Technology

Dr. Wael Badway Dr. Ali Abohaswa

Thanks

