

Analysis of experimental data for selection Lambda-signal at the BM@N experiment

By: Mohamed Magdi Rabie Kamel Fayoum University, Egypt Supervisors: Igor Rufanov Gleb Pokatashkin Veksler and Baldin Laboratory of High Energy Physics, JINR, Dubna, Russia

Outlines

➢ Aim of the project
➢ BM@N Set-up
➢ GEM detectors
➢ Analysis of Λ reconstruction
➢ Conclusion

Aim of the project

Study the structure of Baryonic matter at the Nuclotron (BM@N)

➤Study the structure of Gas Electron Multipliers (GEM) located in BM@N

 \triangleright Analysis of Λ reconstruction with experimental data

Baryonic Matter at Nuclotron BM@N

BM@N Setup

BM@N advantage: large aperture magnet (~1 m gap between poles)

 \rightarrow fill aperture with coordinate detectors which sustain high multiplicities of particles

 \rightarrow divide detectors for particle identification to "near to magnet" and "far from magnet" to measure particles with low as well as high momentum (p > 1-2 GeV/c)

 \rightarrow fill distance between magnet and "far" detectors with coordinate detectors

- Central tracker (GEM+Si) inside analyzing magnet to reconstruct AA interactions
- Outer tracker (DCH,CPC) behind magnet to link central tracks to ToF detectors
- ToF system based on mRPC and TO detectors to identify hadrons and light nucleus
- ZDC calorimeter to measure centrality of AA collisions and form trigger
- Detectors to form TO, L1 centrality trigger and beam monitors
- Electromagnetic calorimeter for γ,e+ e-

BM@N set-up in the deuteron run

For tracking in technical runs with deuteron and carbon beams in December 2016 and March 2017 used 5 detectors 66 x 41 cm² and 2 detectors 163 x 45 cm²

- ▶2-coordinate Si detector with strip pitch of 95&103µm, full size of 25 x 25 cm², 10240 strips
- Detector combined from 4 sub-detectors arranged around beam, each sub-detector consists of 4 Si modules of 6.3 x 6.3 cm²
- One plane installed in front of GEM tracker and operated in March 2017

GEM Detectors operation

Analysis of Λ reconstruction with experimental data

➤Used data set of d+C

- Reconstructed using their decay mode into two oppositely-charged tracks
- Signal topology: decay of a relatively longlived particle into two tracks
- **Selection Criteria**
- Relatively large distance of the closest approach (DCA) to the Primary Vertex
- Small track-to-track separation in the decay vertex
- Relatively large decay length of mother particle

Event topology:

- ✓ PV primary vertex
- \checkmark V₀ vertex of hyperon decay
- \checkmark dca distance of the closest approach
- ✓ path decay length

L0.massh {L0.massh<1.25 && L0.massh>1.07 && L0.path>0 && L0.path<40}

L0.massh {L0.massh<1.25 && L0.massh>1.07 && L0.path>0 && L0.path<40 && L0.ppps0<1 && L0.ppps1<3.5}

L0.massh {L0.massh<1.25 && L0.massh>1.07 && L0.path>0 && L0.path<40 && L0.ppps0<1 && L0.ppps1<3.5 && L0.disth<1}

Conclusion

BM@N purpose is to investigate properties of nuclear matter under extreme density and temperature

- GEM detectors combine high precision track measurements with time-of-flight for particle identification
- Signal of Λ-hyperon is reconstructed in proton-pion invariant mass spectrum

