STAGE 3 INTERNATIONAL STUDENT PRACTICE 2017

k technolog Department: Science and Technology REPUBLIC OF SOUTH AFRICA

science

Laboratory for Accelerator

Based Science

oundation

Joint Institute for Nuclear Research Flerov Laboratory of Nuclear Reactions University Center

PROJECT TITLE

- HpGe detector for energy measurements of gamma-activity
 - Study of the operation principles of X-ray detectors
 - Moseley's Law in Action
 - Alpha Spectroscopy

SPEAKERS

Aurelia Genu – RSA Igor Moroz – Belarus Madian Pino Peraza – Cuba Luis Enrique Llanes Montesino - Cuba

Science 8 technology Department: Science and Technology REPUBLIC OF SOUTH AFRICA

SUPERVISORS

S. Lukyanov K. Mendibaev

Introduction

3 Types of semiconductor detectors

1. X-ray HpGe detector

2. HpGe Gamma detector

History of Moseley's Law

Henry G.J. Moseley's 1887 - 1915

In STEE

- In his early 20's, he measured and plotted x-ray frequencies for about 40 elements of the periodic table and was described by Rutherford as his most talented student.
- Based on his experiments, this is known as Moseley's law $E = a (Z - b)^2$
 - where *a* and *b* are constants depending upon the particular spectral line, E is the energy of characteristic x-ray and Z atomic number.
- Moseley volunteered for combat duty during World War I and was killed in action at the age of 27 during the attack on the Gallipoli in the Dardenelles.

Moseley Plot of characteristic X-rays

• His data Moseley plot is still standard feature of physics textbooks (Figure 1).

Fig. 1 Moseley plot of characteristic X-rays

• Photographic recording of Kα and Kβ x-ray emission lines for a range of elements (Figure 2).

Applications of Moseley's Law

• Any discrepancy in the order of the elements in the periodic table can be removed by Moseley's law by arranging the elements according to the atomic numbers and not according to the atomic weights.

- Moseley's law has led to the discovery of new elements like hafnium (72), technetium (43), rhenium (75) etc.
- This law has been helpful in determining the atomic number of rare earths, thereby fixing their position in the periodic table.

Moseley Law in action

Element Z (Atomic No.)	Energy (keV) K(α)	Energy (keV) K(β)				
₃₈ Sr	14.1	15.8				
₄₇ Ag	22.0	24.9				
49In	24.2	27.2				
₅₇ La	33.4	37.8				
₆₂ Sm	40.1	45.4				

Table 1: Energies of $K(\alpha)$ and $K(\beta)$ transitions in keV and elements listed with increasing atomic number obtained from nuclear data.

Figure 4: $K(\alpha)$ and $K(\beta)$ lines fit to Moseley's Law. We confirm the functional form of the law but different values for the constants (a & b).

Spectrum from X-ray detector

Calculation and results.

E = 30.97 keVA & B = constants obtained from K α Moseley's plot.

$$E = a (Z-b)^{2}$$

$$Z = \sqrt{\frac{E}{a}} + b$$

$$= \sqrt{\frac{30.97}{0.0115}} + 3.0706$$

$$= 54.9$$

Nuclear data: Z = 55 Element is Cs

X-rays

X-rays are emitted when outer-shell electrons fill a vacancy in the inner shell of an atom, releasing X-rays in a pattern that is "characteristic" to each element.

Detectors are manufactured with thin face and side contacts. The area of the rear contact is less than the total area, so the capacitance of such a detector is small. And this means that the resolution will be high at low and medium energies than detectors of other geometries.

General view of the X-ray spectrometer

Preparation for measurement

- 1. Cool the detector, fill the vessel with liquid nitrogen.
- 2. Place a calibration source in the detector.
- 3. Calibrate the energy X-ray spectrometer.

Source

X-ray specter Ra-226

Department:

hemba

ΔB

X-ray specter Eu-152

science

Department:

Main detectors used for gamma

Scintillators detectors

Organic (plastic, organic cristal, liquids) Inorganic (NaI(TI), CsI(TI), BaF2, BGO, etc)

\succ Solid State detectors

HPGe detector, Si

Comparison of detectors

	Pure Ge-detector	Plastic Scintillator
	Price	Chipper
Size	Restricted a few cm ³	No size limitation
Neutron-gamma separation	No need	Need
Efficiency	Less 10 %	Large due to Z and size
Resolution	1 keV	Worst resolution

Use of Nuclear Data Search

•

The Lund/LBNL Nuclear Data Search Version 2.0, February 1999

version 2.0, February 1999

S.Y.F. Chu¹, L.P. Ekström^{1,2} and R.B. Firestone¹

¹ LBNL, Berkeley, USA
² Department of Physics, Lund University, Sweden

WWW Table of Radioactive Isotopes

 Radiation search

 Nuclide search

 Atomic data (X-rays and Auger electrons, very preliminary!)

 Periodic chart interface to the nuclides

 Summary drawings for A=1-277 (PDF)

 Nuclear charts (PDF, 333 kbyte)

 Database status

The data are properly referenced as given in the database status panel. Please give your <u>feedback</u> on the usefulness of and suggestions on how to improve the Tol service.

Help and instructions are given with a "pop-up help" system:

	WWW Table of Radioactive Isotopes									
Radiation search										
Energy:	± 1 keV Search									
Type: 🔘 Alpha 💿 Gamma										
Parent:										
T1/2:	S 🔻 - 🛛 S 💌									
	Mass number: 152 - 152									
	Z: 63 or Element: Eu									
	N:									
Sort by:	Energy, Intensity O A, Z Reset form									
Main page Nuclide search										

Gamma spectra calibration

Gamma spectra of unknown source

Gamma spectra of 2-nd unknown source

Disintegration chain of ²²⁶Ra

:0 Js	Pa221 5.9 Us 9/2-	Pa222 2.9 ms	Pa223 6.5 ms	Pa224 0.79 s	Pa225	Pa226 1.8 m	Pa227 38.3 m (5/2-)	Pa228 22 h 3+	Pa229 1.50 d (5/2+)	Pa230 17.4 d (2-)	Pa231 32760 y 3/2-	Pa232 1.31 d (2-)	Pa233 26.967 d 3/2-	Pa234 6.70 h 4+	Pa235 24.5 m (3/2-)	Pa236 9.1 m 1(-)	Pa237 8.7 m (1/2+)
19	a Th220	α Th221	EC,a Th222	α Th223	α Th224	EC,a Th225	EC,a Th226	EC,a Th227	EC,a Th228	ЕС.β.а Th229	a,sf Th230	EC.B. Th231	β [.] Th232	β:st Th233	β [.] Th234	β [.] Th235	β· β Th236
12	9.7 Us 0+	1.68 ms (7/2+)	2.8 ms 0+	0.60 s (5/2)+	1.05 s 0+	8.72 m (3/2)+	30.57 m 0+	18.72 d (1/2+)	1.9116 y 0+	7340 y 5/2+	7.538E+4 y 0+	25.52 h 5/2+	1.405E10 y 0+ α.sf	22_3 m 1/2+	24.10 d 0+	7.1 m (1/2+)	37.5 m 0+
18 Is	Ac219 11.8 Us	α Ac220 26.4 ms	Ac221 52 ms	α Ac222 5.0 s	Ac223 2.10 m	Ac224 2.78 h	Ac225	Ac226 29.37 h	Ac227 21.773 y	Ac228 6.15 h	Ac229 62.7 m	Ac230 122 s	Ac231 7.5 m	Ac232	Ac233 145 s	Ac234 44 s	Ac235
	992= EC,α	α ⁽³⁴⁾	(3/2-) α	ι. Εር,α	(512-) ΕC,α	υ- EC,β',α,	(312+) а, ^н С	(1) ΕC,β,α,	м2+ β.a	_3+ β·	(3/2+) β	(1+) β-	(112+) β·	(I+) β·	(1/2+) β-	ß	
17	Ra218 25.6 Us	Ra219 10 ms	Ra220 18 ms	Ra221 28 s	Ra222 38.0 s	Ra223 11.435 d	Ra224 3.66 d	Ra225	Ra226 1600 y	Ra227 42.2 m	Ra228 5.75 y	Ra229 4.0 m	Ra230 93 m	Ra231 103 s	Ra232	Ra233 30 s	Ra234
	α	α (112)+	α	α 3/2+	0∓ α, ¹⁴ C	м2+ а,4С	α, ¹⁴ C	β-	L ¹⁴ C	392+ β-	βr	β ²	β. β.	(<i>π1-</i> , <i>π1+</i>) β	β-	β-	β-
6 Js	Fr217 22 Us 9/2-	Fr218 1.0 ms 1-	Fr219 20 ms 9/2-	Fr220 27.4 s 1+	Fr221 4.9 m 5/2-	Fr222 14.2 m 2-	Fr223 21.8 m 3/2(-)	Fr224 3.33 m 1	Fr225 4.0 m 3/2-	Fr226 49 s 1-	Fr227 2.47 m 1/2+	Fr228 38 s 2-	Fr229 50 s	Fr230 19.1 s	Fr231 17.5 s	Fr232	146
	a D=216	a D-217	α D-219	β.α D-210	α D-220	β- D221	β.α D=222	₿ [.]	β [.]	β- D225	β [.] 	β [.] 	β [.] D=228	β·	β-	β-	
ID Js	45 Us 0+	6.54 ms 9/2+	80218 35 ms 0+	3.96 s 5/2+	55.6 s 0+	25 m 7/2(+)	RH222 3.8235 d 0+	R1223 23.2 m 7/2	Rn224 107 m 0+	Kn225 4.5 m 7/2-	7.4 m 0+	22.5 s	65 s 0+		144	ŀ	
4	a At215 0.10 ms	At216 0.30 ms	At217 32.3 ms	α At218 1.5 s	α At219 56 s	4t220 3.71	a At221 2.3 m	At222 54 s	At223 50 s	þ.	140	P	1/7)			
	α. α	ι- EC,β;α,		β.α	β.,α	β·	β·	β-	β.,α		140	·	142	(
3	Po214 164.3 Us 0+	Po215 1.781 ms 9/2+ 8:a	Po216 0.145 s 0+	Po217	Po218 3.10 m 0+ β.α		136)	138	}							
2	Bi213 45.59 m 9/2-	Bi214 19.9 m 1-	Bi215 7.6 m	Bi216 3.6 m (1-)	1,34	•											
	Pr,n Pb211 36.1 m 9/2+ 3-	р .,п Pb212 10.64 h 0+ 3.	Pb213 10.2 m (9/2+) β·	P Pb214 26.8 m 0+ β·	$^{226}\mathbf{Ra} \rightarrow ^{222}\mathbf{Rn} \rightarrow ^{218}\mathbf{Po} \rightarrow ^{214}\mathbf{Pb}$												

Alpha-spectroscopy Silicon detector

Silicon detector

Measurement of thickness of Al-foil by balance weighting

L= 28,9 cm H= 7,8 cm M= 0,5287 g S= L*H= 225,42 cm² $D = M/S = 2,345 \text{ mg/cm}^2$ ρ = 2698,4 mg/cm³ D/ρ= 8,69 μm

Y CIENCIAS APLICADAS

Measurement of thickness of Al-foil (d)

📮 LISE++ [Noname]		x c
File Options Experiment Settings Physic	sics Models Calculations Utilities 1D-Plot 2D-Plot Databases Help	
🟥 📑 🔝 🦚 Set-Up 🚳 🕻		
Projectile 48Ca ²⁰⁺ 140 MeV/u 1 pnA Fragment 42 S16+ Target 3Be 1800 mg/cm ² ST Stripper D1 8 H00 D1 8.2490 Tm S I 11_slits slits -100 R +100 D2 8 H00 D2 8 H00 Calculate reactions in this material FP_PIN Z Element Mass I 13 AI PT 26.982 14 14 14 14 Compound dictionary	Physical calculator ater/into \$i504 micron A Element Z Table of Nucleds Nucleds Nucleds Jon mass 4 0015 Nucleds Nucleds Nucleds Nucleds Jon mass 4 0015 Ion mass 4 0015 Intergy Remain 0 MeV/u Stable Ion mass 4 0015 Intergy Remain 0 MeV/u Stable Ion mass 4 0015 Intergy Remain 0 MeV/u Stable Ion mass 4 0015 Intergy Remain 0 MeV/u Stable Ion mass 4 0005 Intergy Stag (sigma) 0.0007879 MeV/u Stable Ion mass 4 0005 Intergy Stag (sigma) 0.0007879 MeV/u State Original Intergy Stag (sigma) 0.0007879 MeV/u Intergy Remain Colockitas Intergy Stag (sigma) 0.0007879 MeV/u Intergy Remain Colockitas Intergy Stag (sigma) 0.02063 MeV/u Angular Stag (sigma) 0.02057 Intergy Remain Colockitas Intergy Remain Colockitas Intergy Remain Colockitas Intergy Remain Intergy Remain Intergy Remain	
V OK X Cancel	Image: Section of block Image: Section of block <td>-</td>	-

THANK YOU FOR YOUR ATTENTION!

Dubna

