Project **'VIRTUAL LABORATORY'** as a learning tool for nuclear experiment preparation

George Shikwambana North-West University

NORTH-WEST UNIVERSITY YUNIBESITI YA BOKONE-BOPHIRIMA NOORDWES-UNIVERSITEIT

Nastassia Aleksandryna

International Sakharov Environmental institute of Belarusian State University

International Sakharov Environmental Institute of Belarusian State University

JINR Lab: Virtual Laboratory

Project supervisors

- Prof Yuri Panebrattsev
- Alexander Strekalovsky
- Pavel Semchukov
- Kseniya klygina

The Aim of the project

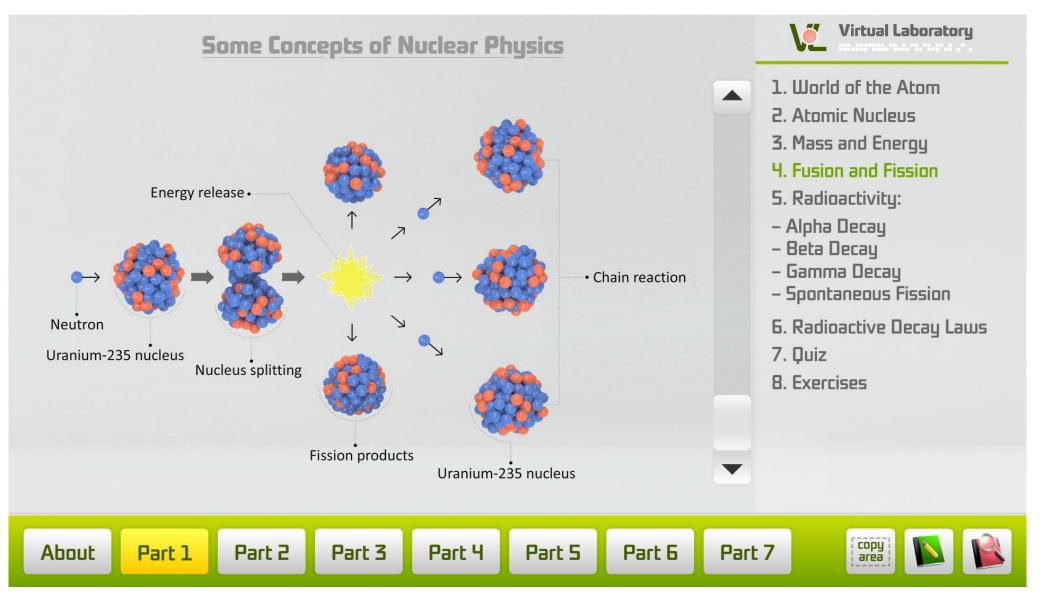
- To support the theoretical part of learning with experimental learning
- To learn about different equipment's in Nuclear experiment through,
- firstly Virtual laboratory software (both theoretical background and Virtual equipment)
- Then practical work with the real equipment's
- Final use what we learned practice with equipment in the main goal of lab which is ,
- Measuring the thickness of the Foil through Energy loss Spectrum.

Software 'Virtual Laboratory'

- About
- Part 1 'Some Concepts of Nuclear Physics'
- Part 2 'How to Measure Radioactivity'
- Part 3 'Theoretical Models of the Atomic Nucleus'
- Part 4 'Nuclear Fission Experiment'
- Part 5 'Light Ions Spectrometer Measurements'
- Part 6 'Light Ions Spectrometer Data Analysis'
- Part 7 'Interactive environment for nuclear experiment modeling'

Virtual Laboratory of Nuclear Fission

The goal of the project is to include current scientific data into the educational process, to conduct virtual and online laboratory research based on information and communication technologies using modern scientific equipment and data obtained from the existing physical facilities.



- 1. Welcome Words
- 2. About the Project
- 3. Manual
- 4. Developers

Theoretical basis

7/20. Choose 6 elements whose names are connected with Russia.

actinium

[227]

thorium

232.0

protactinium

231.0

uranium

238.0

neptunium

[237]

plutonium

[244]

americum

[243]

curium

[247]

berkeliur

[247]

californium

[251]

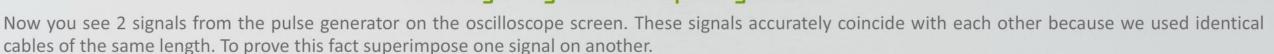
[252]

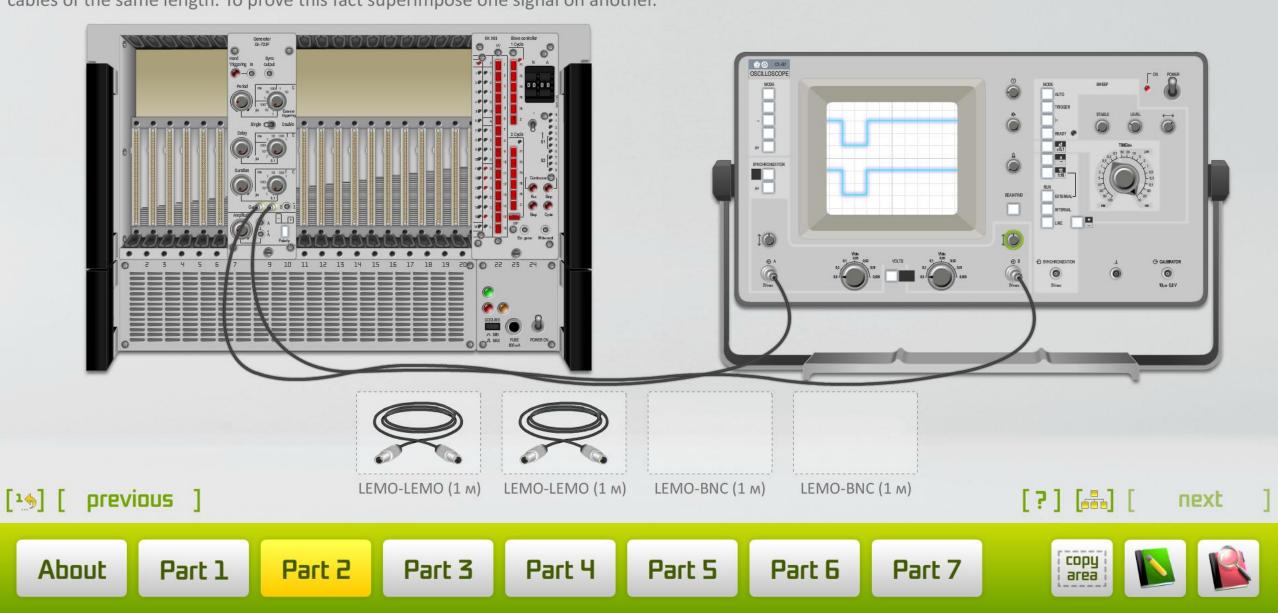
fermium

[257]

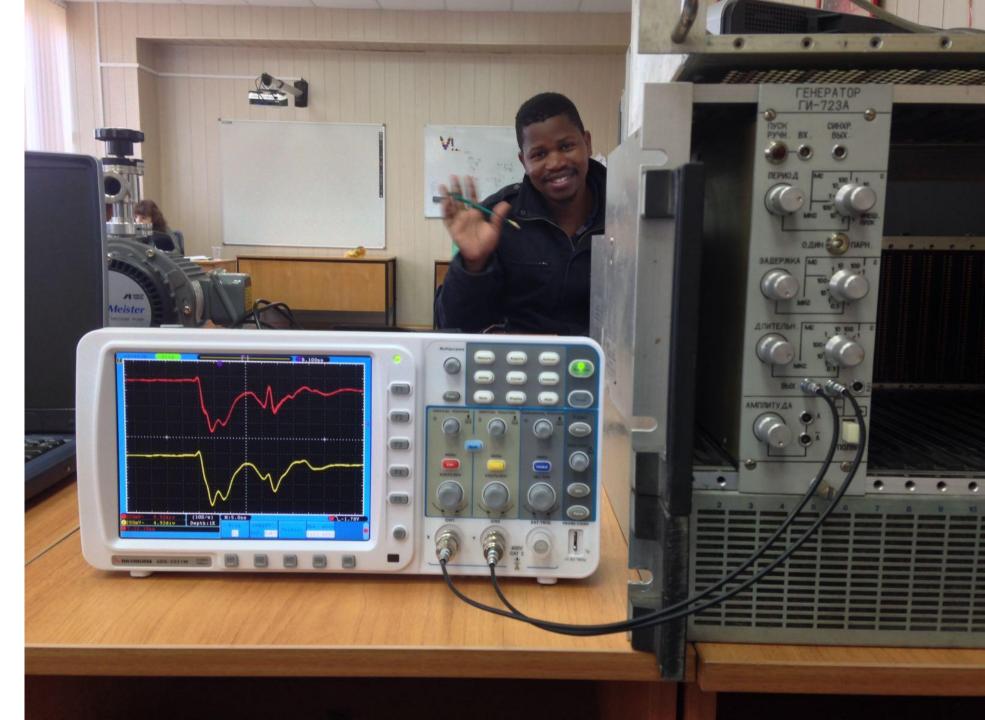
[258]

[259]

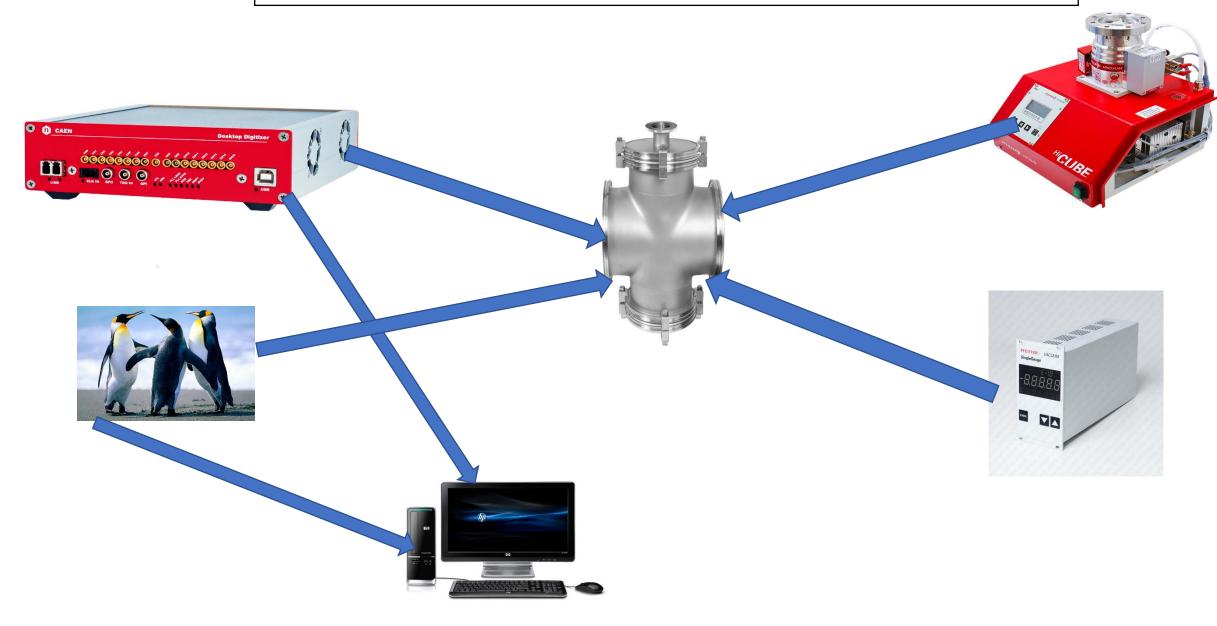

lawrencium

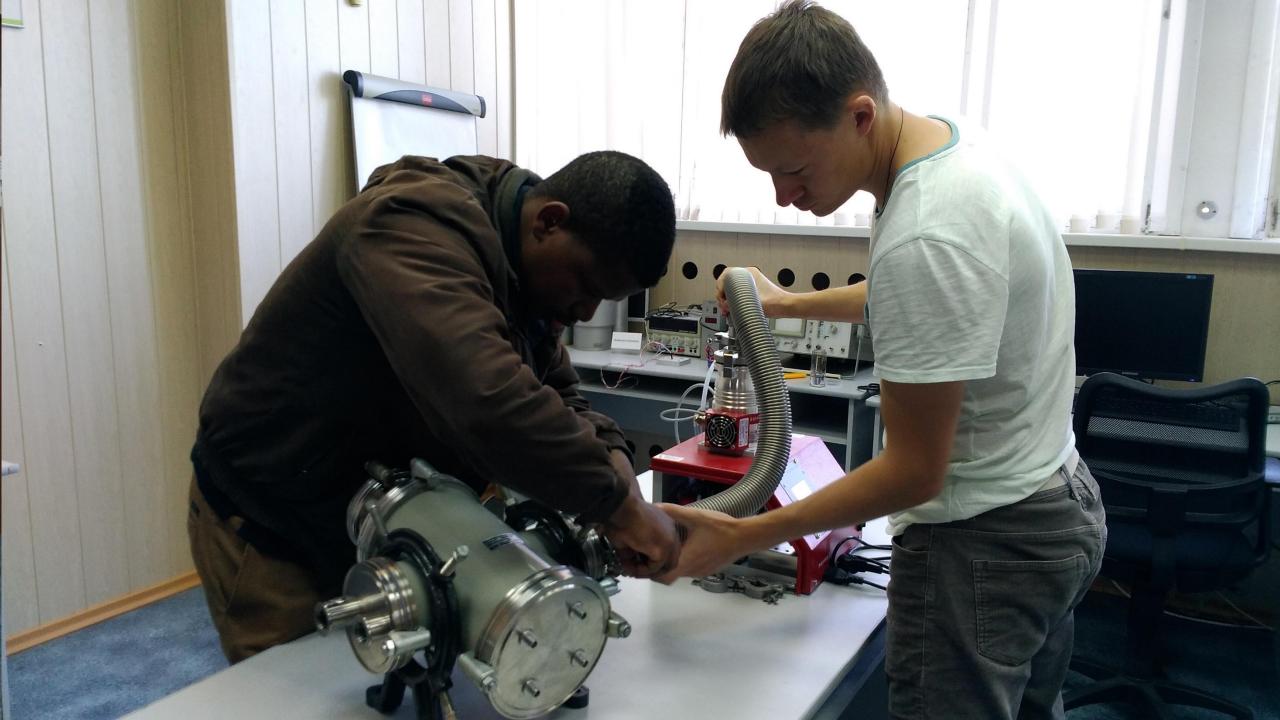

[262]

The Periodic Table of the Elements														18			
1 H hydrogen (1.007, 1.009)	2		Key:	_								13	14	15	16	17	2 He helium 4.003
3 Li lithium (6.933, 6.997)	4 Be beryllium 9.012	atomic number Symbol name snandard atomic weight										5 B boron [10.80, 10.83]	6 C carbon (12.00, 12.02)	7 N nitrogen [14.00, 14.01]	8 О ажудеп [15.99, 16.00]	9 F fluorine 19.00	10 Ne neon 20.18
11 Na sodium 22.99	12 Mg magnesium [24.30, 24.31]	3	4	5	6	7	8	9	10	11	12	13 Al aluminium 26.98	14 Si silicon (28.08, 28,09)	15 P phosphorus 30.97	16 S sulfur (32.05, 32,08)	17 Cl (35.44, 35,46)	18 Ar argon 39.95
19 K potassium 39.10	20 Ca calcium 40.08	21 SC scandium 44.96	22 Ti titanium 47.87	23 V vanadium 50.94	24 Cr chomium 52.00	25 Mn manganese 54.94	26 Fe iron 55.85	27 Co cobalt 58.93	28 Ni nidkel 58.69	29 Cu copper 63.55	30 Zn zinc 65.38(2)	31 Ga gallium 69.72	32 Ge germanium 72.63	33 As arsenic 74.92	34 Se selenium 78.96(3)	35 Br bromine [79.90, 79.91]	36 Kr krypton 83.80
37 Rb rubidium 85.47	38 Sr strontium 87.62	39 Y yttrium 88.91	40 Zr zirconium 91.22	41 Nb nioblum 92.91	42 Mo molybdenum 95.96(2)	43 TC technetium	44 Ru ruthenium 101.1	45 Rh rhodium 102.9	46 Pd palladium 106.4	47 Ag silver 107.9	48 Cd cadmium 112.4	49 In indium 114.8	50 Sn tin 118.7	51 Sb antimony 121.8	52 Te tellurium 127.6	53 iodine 125.9	54 Xe xenon 131.3
55 CS caesium 132.9	56 Ba barium 137.3	57-71 Ianthanoids	72 Hf hafnium 178.5	73 Ta tantalum 180.9	74 W tungsten 183.8	75 Re rhenium 186.2	76 OS osmium 190.2	77 Ir iridium 192.2	78 Pt platinum 195.1	79 Au gold 197.0	80 Hg mercury 200.6	81 Ti thallium [204.3, 204.4]	82 Pb lead 207.2	83 Bi bismuth 208.9	84 PO polonium (209)	85 At astatine [210]	86 Rn radon [222]
87 Fr franium [223]	88 Ra radium [226]	89-103 actinoids	104 Rf rutherfordium [261]	105 Db dubnium [252]	106 Sg seaborgium [266]	107 Bh bohrium [262]	108 HS hassium [269]	109 Mt meitnerium [268]	110 DS darmstadtium [272]	111 Rg roentgenium [272]	112 Cn copernicum [285]	113 Nh nihonium [286]	114 Fl flerovium [289]	115 Mc mascovium [290]	116 LV livermorium [293]	117 TS tennessine [234]	118 Og oganneson [234]
		57 La Ianthanum 138.9	58 Ce cerium 140.1	59 Pr praseodymium 140.9	60 Nd neodymium 144.2	61 Pm promethium [145]	62 Sm samarium 150.4	63 Eu europium 1520	64 Gd gadolinium 157.3	65 Tb terbium 158.9	66 Dy dysprosium 162.5	67 Ho holmium 164.9	68 Er erbium 167.3	69 Tm thulium 168.9	70 Yb ytterbium 173.1	71 Lu lutetium 175.0	
		87 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	Md	102 No	103 Lr	


Laboratory work 2.1

Study of signals from a pulse generator





In real life

The main Project Methodology

• Data Processing building the spectra's

• Calculation with Excel and Data Processing building the spectra's for the most probable energies of our spectra's

- Calculating the difference between the Initial Energy and the final Energy and using Trim tables to find approximate
- Thickness of the Foil.

Results and Discussion

Conclusion

ACKNOWLEDGEMENTS

science & technology

Department: Science and Technology REPUBLIC OF SOUTH AFRICA

International Sakharov Environmental Institute of Belarusian State University

Laboratory for Accelerator Based Sciences

