International Student Practice 2017, JINR, Dubna

Neutron Activation Analysis(NAA)

for Life Science

N.M. Dhlalani, H.P. Moabi, V. Gorskaya, R. Titkov

The Sector of NAA and Applied Research Frank Laboratory of Neutron Physics

11th to 29th September 2017

The NAA Participants 2017

South Africa

Hendric Moabi Nomcebo Dhlalani

Belarus

Veronica Gorskaya Ruslan Titkov

Profile of Participants

Nomcebo M Dhlalani University of Stellenbosch BSc Physics BSc Hons Nuclear Physics

Hendric Moabi North West University NWU BSc Physical & Chemical Science BSc Hons Radiation Science MSc Radiation Science

Veronica Gorskaya ISEI BSU Student

Ruslan Titkov ISEI BSU Student

Content

- Introduction and history of NAA
- Principles of NAA
- Applications of NAA
- Types of NAA
- Environmental sampling and preparation
- Irradiation using IBR-2 reactor
- Analysis of Spectrum
- Advantages and limitations of NAA
- Joint projects with RSA and Belarus
- Outcome
- Acknowledgement

Introduction and history of NAA

- Neutron Activation Analysis (NAA):is an isotope specific analytical technique for the qualitative and quantitative determination of elemental content.
- In 1936, G. Hevesy (Hungary) and H. Levi (Denmark) discovered NAA when they found that samples containing certain rare earth elements became highly radioactive after exposure to a source of neutrons.

2017/09/29

6

Types of NAA

• Destructive (radiochemical) RNAA – the resulting radioactive sample is chemically decomposed, and the elements are chemically separated

• Nondestructive (instrumental) INAA – the resulting radioactive sample is kept intact

Environmental sampling and preparation

1. Types of Samples

- Environmental samples
- Geological samples
- Biological samples
- Liquids
- Filters
- Foodstuffs

2. Sample preparation

3. Sample Packing

- Moss samples wrapped in polyethylene bag and aluminium pan for shortand long-lived irradiations respectively.
- Samples placed in transport capsules
- Short-lived isotopes samples irradiated for 60 seconds
- Long-lived isotopes samples irradiated for 4 days

4. Other Sampling Methods

Irradiation using IBR-2 reactor

1. Irradiation using IBR-2 reactor

IBR-2 Spectrometers for submission of applications:

Diffraction: HRFD RTD DN-12 SKAT-EPSILON FSD

Small-angle scattering: YuMO

Reflectometry: REMUR REFLEX GRAINS

Inelastic scattering: DIN-2PI NERA

2. Principle of functioning

Reactor vessel

Stationary reflector

Moderator

Parameters of IBR-2: -Average power 2 MW -PuO2 fuel -Rotation rate, rev/min: main reflector 600 auxiliary reflector 300 - Neutron density flux $10^{16} n \cdot m^{-2} \cdot s^{-1}$

3. REGATA

Ch1-Ch4 –irradiation channels, Sintermediate storage, DCV- directional control valves,

L- loading unit, RCB- radiochemical glovecell, U- unloading unit, SU- separate unit, SM- storage magazine, R- repacking unit, D- Ge(Li) detector, AA- amplitude analyser,

CB- control board, CC- CAMAC controller, R1-R3- the rooms where the 2017/09/29 the 17 system is located.

4. The flow chart of NAA at IBR-2 reactor

- All data about of all stages of analysis are stored in the database
- The database allows to use the electronic document circulation, gives a broad opportunities of search, sorting and the analysis of the collected data.
- There is the program and equipment for automation of spectra measurement
- There is the program for automation of concentration calculation and final result receiving
- Several service programs bring additional opportunities to automation of NAA

Analysis of Spectrum

1. Processing of Gamma-Ray Spectra

The minimum requirements:

- Determine the position of peaks in the spectrum
- Estimate the areas of the peaks (together with uncertainties)
- Calculate the energy of the gamma-ray each peak represents
- Correct for counting losses due to dead time and random summing
- Make corrections for decay from a reference time

2. Genie-2000

Genie 2000

9/29

23

3. Concentration Program

	NO).			-	
Recalculation of SRMs activ	ity Group standard	Concentration	Table of nuclides Clear	form Help	
Recalculation of SRMs activity					
Base file of SRM flux monitor ac	ctivity: not selected				
File of SRM flux monitor activity	: not selected				
File(s) of SRM activity: not select	cted				
	Rec	calculate and save S	RMs activity		
Group standard					
Files of SRM activity: not select	ted				
	Creat	e a summary table of	SRMs activity		
Data for a table of SRMs chee	*				
Calculated uncertainty	Z-scores	Reference	e uncertainty		
File of group standard: not sele	cted				
	Calculate SRM(s) on	a group standard an	d save a table of SRMs check		
Concentration					
File(s) of analyzed sample activ	ity: not selected				
File of group standard: not sele	cted				
Base file of SRM flux monitor a	ctivity: not selected				
File of sample flux monitor activ	ity: not selected				
Deselect flux r	nonitors file		Coefficient of neutrons flu	ıx change	1.0
Source of SLL data	LI-1 and SLI-2	-	Systematic error, %:		0
	Ca	lculate and save cor	centrations		
Files of elements concentration	Ca of analyzed samples: not	Iculate and save cor selected	ncentrations		
Files of elements concentration	Ca of analyzed samples: not Create an int	Iculate and save con selected	ements concentration		

4. Elements measured using NAA

2017/09/29

25

5. The most commonly used programs

- ArcGIS
- Statistica
- Origin-Lab
- CorelDraw

ArcGIS

Statistica

Origin-Lab

CorelDraw

2017/09/29

30

Advantages and limitations of NAA

- Primary Analytical Technique
- Wide possibilities of applications
- Non-destructive Analysis
- Multi-element Analysis
- High Sensitivity and Precision
- Limited sample handling
- Simultaneous identification of elements
- Low temperature operation (30-70°C)
- The Chemical form and Physical State of the Elements do not Influence the Activation and decay Process

32

Limitations

- Samples irradiated in NAA will remain radioactive for a period of time
- Radioactive samples require special handling and disposal protocols
- The need for neutron source as reactor or neutron generator

Joint projects with Republic of South Africa(RSA)

- Atmospheric Deposition of Trace Elements in the Western Cape, South Africa, Studied with the Biomonitoring Technique, NAA, ICP-MS and GIS Technology
- Study on Levels of Priority Aquatic Pollutants in South African Cultivated Bivalve Mollusks ("The South African Mussel Watch")
- Use of INAA to Determine Rare Earth Element Contents in Different Fresh and Weathered South African Fly Ash
- Elemental Composition of Fly Ash: A Comparative Study Using Nuclear and Related Analytical Techniques

Necsa We're in your world

Joint projects with Belarus

- Investigation of the crystallization processes and characteristics of the diamonds obtained in the C-Mn-Ni-Fe system
- Study of the phase formation processes and physical characteristics of compounds in the Cu-Fe-S system under the influence of high pressures and temperatures
- Study of the phase formation processes and physical characteristics of composite materials in the system of B-N-Al-Ti obtained under the influence of high pressures and temperatures
- Investigation of the crystallization processes of cubic boron nitride in the Li₃N-BN system in high-pressure devices of the "toroid" type

Outcome

• The aim of this practice is to expose students from member state countries to scientific research and facilities of world class standard, managed by JINR.

• The practice provides students with knowledge that will improve their respective country's nuclear technology, to support the development of the entire country.

Acknowledgement

Prof. Marina V. Frontasyeva. Assoc Prof. Wael Badawy. Also special thanks to all staff of the Neutron Activation Analysis and Applied Research Unit, Frank Laboratory of Neutron Physics.

