Introduction to beta-delayed particle spectroscopy by the OTPC technique

Flerov Laboratory of Nuclear Reactions

J. Furtak Faculty of Chemistry, University of Warsaw

A. Rynkiewicz

Faculty of Power and Aeronautical Engineering, Warsaw University of Technology

J. Nováková

Faculty of Mathematics, Physics and Informatics, Comenius University of Bratislava

Supervisor – dr Grzegorz Kamiński Flerov Laboratory of Nuclear Reactions 2017–07–20

Introduction

Interest in nuclei at the borders of stability

Possible decays

Principle of work

Optical Time-Projection Chamber and GasElectronMultiplier

Optical Time-Projection Chamber

Charge-CoupledDevice Camera, PhotonMultiplierTube

- trajectory of the particle
- intensity of the signal

Charge-CoupledDevice Camera, PhotonMultiplierTube

- · trajectory of the particle
- intensity of the signal

- information about energy (by the shape of the PMT signal (Bragg, Gauss) → type of particle)
- number of decay particles and events

Origin of the beam in our experiment

Analysis

2p

Mounting of a testing device

Principle of work

Summary

- OTPC is a type of proportional chamber with optical readout dedicated to studies of exotic and rare nuclear decays
- OTPC is a perfect instrumentation tool for separators (for example ACCULINNA, ACCULINNA-2, etc.)
- OTPC allows us to reconstruct energy spectra of the beam and branching ratios
- with a different experimental beam, it is possible to observe a 3p decay

Thank you for your attention!