

BREABĂN ADINA LOREDANA – A. I. CUZA UNIVERSITY, ROMANIA

SUPERVISOR: ALEXANDER SVIRIKHIN

# Super Heavy Elements

Super-heavy elements, (SHE) usually refer to the transuranium elements with atomic number higher than 92. All of these elements are unstable and decay radioactively into other elements.

The important decay mode for SHE is "Spontaneous Fission" [marked green in diagram].



### **Super Heavy Elements**

SHE have only been made artificially, and their short half-lives cause them to decay after a very short time, ranging from a few minutes to just a few milliseconds (except for dubnium, which has a half life of over a day.

Super-heavy atoms are created through the bombardment of elements in a particle accelerator.





### Some of the SHE elements were discovered in FLNR

#### New super heavy elements discovered

The latest release of the Periodic Table (dated 28 November 2016) includes the recently added elements 113, 115, 117, and 118 with their names and symbols. The International Union of Pure and Applied Chemistry has announced these proposed names:

➤ Nihonium and symbol Nh, for the element 113

Moscovium and symbol Mc, for the element 115

> Tennessine and symbol Ts, for the element 117

➢ Oganesson and symbol Og, for the element 118

| 1                                            |                                 |                      |                                                                           |                               | I.                      | UPAC                       | Period                       | dic Tak                        | ble of                       | the Ele                         | ement                    | 'S                                           |                                                |                                                             |                                                |                                | 18                                |
|----------------------------------------------|---------------------------------|----------------------|---------------------------------------------------------------------------|-------------------------------|-------------------------|----------------------------|------------------------------|--------------------------------|------------------------------|---------------------------------|--------------------------|----------------------------------------------|------------------------------------------------|-------------------------------------------------------------|------------------------------------------------|--------------------------------|-----------------------------------|
| 1<br>H<br>hydrogen                           | 2                               |                      |                                                                           |                               | -                       |                            |                              |                                |                              |                                 |                          | 12                                           | 14                                             | 15                                                          | 16                                             | 17                             | 2<br>He<br>helium                 |
| [1.0078, 1.0082]                             | 2                               |                      | Key:                                                                      |                               |                         |                            |                              |                                |                              |                                 |                          | 13                                           | 14                                             | 15                                                          | 10                                             |                                | 4.0026                            |
| 3<br>Li<br>lithium<br>6.94<br>[6.938, 6.997] | 4<br>Be<br>beryllium<br>9.0122  |                      | atomic num<br>Symbo<br>name<br>conventional atomic v<br>standard atomic v | ber<br>Ol<br>weight<br>veight |                         |                            |                              |                                |                              |                                 |                          | 5<br>B<br>boron<br>10.81<br>[10.806, 10.821] | 6<br>C<br>carbon<br>12.011<br>[12.009, 12.012] | 7<br>N<br>nitrogen<br><sup>14.007</sup><br>[14.006, 14.008] | 8<br>O<br>oxygen<br>15.999<br>[15.999, 16.000] | 9<br>F<br>fluorine<br>18.998   | 10<br><b>Ne</b><br>neon<br>20.180 |
| 11<br>Na<br>sodium                           | 12<br>Mg<br>magnesium<br>24.305 | 2                    | ,                                                                         | F                             | c                       | 7                          | 0                            | 0                              | 10                           | 44                              | 10                       | 13<br>Al<br>aluminium                        | 14<br>Si<br>silicon<br>28.085                  | 15<br>P<br>phosphorus                                       | 16<br><b>S</b><br>sulfur<br>32.06              | 17<br>Cl<br>chlorine<br>35.45  | 18<br><b>Ar</b><br>argon          |
| 22.990                                       | [24.304, 24.307]                | 3                    | 4                                                                         | 5                             | 0                       | 7                          | 8                            | 9                              | 10                           | 11                              | 12                       | 26.982                                       | [28.084, 28.086]                               | 30.974                                                      | [32.059, 32.076]                               | [35.446, 35.457]               | 39.948                            |
| 19<br>K<br>potassium                         | 20<br>Ca<br>calcium             | 21<br>Sc<br>scandium | 22<br><b>Ti</b><br>titanium                                               | 23<br>V<br>vanadium           | 24<br>Cr<br>chromium    | 25<br>Mn<br>manganese      | 26<br>Fe<br>iron             | 27<br>Co<br>cobalt             | 28<br>Ni<br>nickel           | 29<br>Cu<br>copper              | 30<br>Zn<br>zinc         | 31<br>Ga<br>gallium                          | 32<br>Ge<br>germanium                          | 33<br>As<br>arsenic                                         | 34<br>Se<br>selenium                           | 35<br>Br<br>bromine            | 36<br>Kr<br>kryptor               |
| 39.098                                       | 40.078(4)                       | 44.956               | 47.867                                                                    | 50.942                        | 51.996                  | 54.938                     | 55.845(2)                    | 58.933                         | 58.693                       | 63.546(3)                       | 65.38(2)                 | 69.723                                       | 72.630(8)                                      | 74.922                                                      | 78.971(8)                                      | 79.904<br>[79.901, 79.907]     | 83.798(                           |
| 37<br><b>Rb</b><br>rubidium                  | 38<br><b>Sr</b><br>strontium    | 39<br>Y<br>yttrium   | 40<br><b>Zr</b><br>zirconium                                              | 41<br><b>Nb</b><br>niobium    | 42<br>Mo<br>molybdenum  | 43<br>TC<br>technetium     | 44<br><b>Ru</b><br>ruthenium | 45<br><b>Rh</b><br>rhodium     | 46<br><b>Pd</b><br>palladium | 47<br>Ag<br>silver              | 48<br>Cd<br>cadmium      | 49<br>In<br>indium                           | 50<br><b>Sn</b><br>tin                         | 51<br><b>Sb</b><br>antimony                                 | 52<br><b>Te</b><br>tellurium                   | 53<br>I<br>iodine              | 54<br>Xe<br>xenor                 |
| 85.468                                       | 87.62                           | 88.906               | 91.224(2)                                                                 | 92.906                        | 95.95                   |                            | 101.07(2)                    | 102.91                         | 106.42                       | 107.87                          | 112.41                   | 114.82                                       | 118.71                                         | 121.76                                                      | 127.60(3)                                      | 126.90                         | 131.29                            |
| 55<br>CS<br>caesium                          | 56<br>Ba<br>barium              | 57-71<br>Ianthanoids | 72<br><b>Hf</b><br>hafnium                                                | 73<br><b>Ta</b><br>tantalum   | 74<br>W<br>tungsten     | 75<br><b>Re</b><br>rhenium | 76<br>OS<br>osmium           | 77<br><b>Ir</b><br>iridium     | 78<br><b>Pt</b><br>platinum  | 79<br>Au<br>gold                | 80<br>Hg<br>mercury      | 81<br>TI<br>thallium                         | 82<br>Pb<br>lead                               | 83<br>Bi<br>bismuth                                         | 84<br>Po<br>polonium                           | 85<br>At<br>astatine           | 86<br><b>Rn</b><br>rador          |
| 132.91                                       | 137.33                          |                      | 178.49(2)                                                                 | 180.95                        | 183.84                  | 186.21                     | 190.23(3)                    | 192.22                         | 195.08                       | 196.97                          | 200.59                   | [204.38 204.39]                              | 207.2                                          | 208,98                                                      |                                                |                                |                                   |
| 87<br><b>Fr</b><br>francium                  | 88<br><b>Ra</b><br>radium       | 89-103<br>actinoids  | 104<br><b>Rf</b><br>rutherfordium                                         | 105<br>Db<br>dubnium          | 106<br>Sg<br>seaborgium | 107<br>Bh<br>bohrium       | 108<br><b>HS</b><br>hassium  | 109<br><b>Mt</b><br>meitnerium | 110<br>DS<br>darmstadtium    | 111<br><b>Rg</b><br>roentgenium | 112<br>Cn<br>copernicium | 113<br><b>Nh</b><br>nihonium                 | 114<br>FI<br>fleroviur                         | 115<br>Mc<br>moscovium                                      | 116<br>LV<br>livermorium                       | 117<br><b>TS</b><br>tennessine | 118<br>Oganess                    |
|                                              |                                 |                      | 57                                                                        | 58                            | 59                      | 60                         | 61                           | 62                             | 63                           | 64                              | 65                       | 66                                           | 67                                             | 68                                                          | 69                                             | 70                             | 71                                |



INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

| 57<br>La<br>Ianthanum<br>138.91 | 58<br><b>Ce</b><br>cerium<br>140.12  | 59<br>Pr<br>praseodymium<br>140.91 | 60<br>Nd<br>neodymium<br>144.24 | 61<br>Pm<br>promethium | 62<br>Sm<br>samarium<br>150.36(2) | 63<br>Eu<br>europium<br>151.96 | 64<br>Gd<br>gadolinium<br>157.25(3) | 65<br><b>Tb</b><br>terbium<br>158.93 | 66<br>Dy<br>dysprosium<br>162.50 | 67<br><b>HO</b><br>holmium<br>164.93 | 68<br>Er<br>erbium<br>167.26 | 69<br><b>Tm</b><br>thulium<br>168.93 | 70<br>Yb<br>ytterbium<br>173.05 | 71<br>Lu<br>Iutetium<br>174.97 |
|---------------------------------|--------------------------------------|------------------------------------|---------------------------------|------------------------|-----------------------------------|--------------------------------|-------------------------------------|--------------------------------------|----------------------------------|--------------------------------------|------------------------------|--------------------------------------|---------------------------------|--------------------------------|
| 89<br>Ac<br>actinium            | 90<br><b>Th</b><br>thorium<br>232.04 | 91<br>Pa<br>protactinium<br>231.04 | 92<br>U<br>uranium<br>238.03    | 93<br>Np<br>neptunium  | 94<br>Pu<br>plutonium             | 95<br>Am<br>americium          | 96<br>Cm<br>curium                  | 97<br>Bk<br>berkelium                | 98<br>Cf<br>californium          | 99<br>Es<br>einsteinium              | 100<br>Fm<br>fermium         | 101<br>Md<br>mendelevium             | 102<br>No<br>nobelium           | 103<br><b>Lr</b><br>Iawrencium |

For notes and updates to this table, see www.iupac.org. This version is dated 28 November 2016. Copyright © 2016 IUPAC, the International Union of Pure and Applied Chemistry.

# Creation of superheavy elements

- For production of superheavy elements you need: ion source
  - accelerator
  - target
  - Separation and detection of the reaction products: separation filter
    - detector system for  $\alpha$  decay

# Spontaneus fission

Spontaneous fission is a form of radioactive decay where an atom's nucleus splits into two smaller nuclei and generally one or more neutrons.

The reason fission occurs is that energy upsets the balance between the electrostatic repulsion between positively-charge protons and the strong nuclear force that holds protons and neutrons together. The nucleus oscillates, so the repulsion may overcome the short-range attraction, causing the atom to split.

Spontaneous fission generally occurs in atoms with atomic numbers above 90.

For example, uranium-238 decays by alpha decay with a half-life on the order of 10<sup>9</sup> years, but also decays by spontaneous fission on the order of 10<sup>16</sup> years.



# Spontaneous fission of heavy elements

SF Halflives for SHE show strong dependence on so called "magic numbers".

The numbers of nucleons needed to fill each successive shell are called the magic numbers: The traditional ones are 2, 8, 20, 28, 50, 82, and 126.



# Multiplicity of prompt neutrons from SF

The multiplicity distribution of prompt neutrons is one of the important characteristics of spontaneous fission.

The number of neutrons emitted during fission directly depends on the degree of excitation of fission fragments and thus plays an important role in the restoration of the reaction energy balance and aids the exploration of the nuclear properties.



function of the atomic mass.

## **Experimental setup**

The detector system of the SHELS separator has been complemented with an array of 54 <sup>3</sup>He neutron counters to study the multiplicity of prompt spontaneous-fission neutrons.









The focal plane Si-detector placed inside the neutron detector

 <sup>3</sup>He-counters placed in moderator and surrounded by shield (polyethylene with boron)

Dimensions of counters: D=30mm,

L=500mm

<sup>3</sup>He pressure – 8 At

*Efficiency for single neutrons:* **43.5 %** (<sup>248</sup>Cm-source)

# **NEUTRON DETECTION**

Neutrons have mass but no electrical charge. Because of this they cannot directly produce ionization in a detector, and therefore cannot be directly detected.

➤ This means that neutron detectors must rely upon a conversion process where an incident neutron interacts with a nucleus to produce a secondary charged particle. These charged particles are then directly detected and from them the presence of neutrons is deduced.



# He 3 counters

Prompt neutrons from SF have energies of 1 - 1,5 MeV – cross section 7 orders smaller

 $\Rightarrow$  necessary to slow them down with polyethylene material

The most common reaction used for high efficiency thermal neutron detection today is:

#### $n + 3He \rightarrow p + 3H + 765 \text{ keV}$

where both the proton and the triton are detected by a gas filled proportional counter;

[cross section: 5400 barns – for thermal neutrons]



# BGO detectors (Bismuth Germanate Scintillation)

- Bismuth Germanate (BGO) is a high Z, high density scintillation material with chemical composition Bi4Ge3O<sup>12</sup>.
- Due to the high atomic number of bismuth (83) and its high density, BGO is a very efficient γ-ray absorber.

Voltage1000 VAmplitude2026Coarse gain20Fine gain5.8PolaritynegativeShaping time0.5 μs

For our BGO detector:

#### BGO detectors (Bismuth Germanate Scintillation)

The photopeak efficiency (also called the photofraction) – the ratio of the number of counts in the total absorption photopeak to the total number of counts as a function of the γ-ray energy for 38mm diameter, 38mm high (1.5" x 1.5") Nal(Tl) and BGO crystals.

The decay time of BGO is about 300ns at room temperature, which is comparable to that of NaI(TI).



Figure 4. Photopeak efficiencies for BGO and NaI(TI) scintillation detectors, 38mm diameter, 38 mm high.

### Silicon detector

Advantages of silicon:

- Reaction products are stopped in the detector
- $\alpha$  particle and fission fragments

are measured

• High energy resolution:  $\Delta E = 40$  keV, for  $\alpha$  particles



## Veto detector

For preparing the neutron detector we used a silicon detector as a trigger for neutrons.

**Double-Sided Strip Detectors** – CD Series **Features**:

> Strip detectors mounted on epoxy boards
> Size: from 40 x 60 mm<sup>2</sup> and larger
> Active thickness: 300 to 400 µm
Advantages:

Good timing performances



### Calibration of detector

We measured active emitters, which were placed in a vacuum.

We evaluated the results of each sensor and then we evaluated best measured values for the center of the silicon detector.



## Goal of the experiment

The main goal of our project was preparing the detection system of SHELLS setup for experiments aimed to investigation of neutron properties of spontaneous fissioning heavy nuclei.

 $\Box$  Calibration of Si detector with  $\alpha$  sources

Determing efficiency of neutron detector



# Multiplicity and probability



The multiplicity distribution of emitted neutrons from spontaneous fission of <sup>248</sup>Cm

The experimental and reference probability distribution of emitted neutrons from spontaneous fission of <sup>248</sup>Cm

# The efficiency of neutron detector

To determine the detector efficiency, we calculated some ratios between the numbers of emitted neutrons, and then we compared these ratios with some known ratios. We obtained different efficiency for each ratio, and then we calculated the average efficiency.

| Number of<br>neutrons | Ratio                                    | Efficiency<br>(%) | Average efficiency<br>(%) |
|-----------------------|------------------------------------------|-------------------|---------------------------|
| N <sub>1</sub> =5412  | N <sub>1</sub> /N <sub>2</sub> =1.14953  | 49                |                           |
| N <sub>2</sub> =4708  | $N_1/N_3 = 2.7556$                       | 47                |                           |
| N <sub>3</sub> =1964  | N <sub>2</sub> /N <sub>3</sub> =2.39715  | 46.5              | 46.8                      |
| N <sub>4</sub> =443   | N <sub>3</sub> /N <sub>4</sub> =4.43341  | 46                |                           |
| N <sub>5</sub> =46    | N <sub>2</sub> /N <sub>4</sub> =10.62754 | 45.5              |                           |

The efficiency of our detector when the <sup>248</sup>Cm source was placed at 0.2 cm away from the detector We did the same measurements moving the <sup>248</sup>Cm source at 2 and 8 cm away from the detector, and the average efficiency we obtained was:

| <b>Distance (cm)</b> | Average efficiency<br>(%) |   |
|----------------------|---------------------------|---|
| 0.2 cm               | 46.8                      |   |
| 2 cm                 | 45,7                      | * |
| 8 cm                 | 42,1                      | * |

We can observe that the efficiency drops when the distance grows, this means that not all the particles are detected, and the detector will detect more of the particles from the center of the beam.

# Conclusion

□ We collected a lot of data for spontaneous fission events (15000) and prompt neutrons emitted in this process (23000)

We calibrated the Si detectors with alpha sources of known energies (<sup>212</sup>Bi and <sup>212</sup>Po) from thorium decay chain:

1 channel = 2,8 keV

FWHM ( $E\alpha_{Po212}$  - 8785 keV) = 26 keV (0.3%)

□ The efficiency of neutron detector (Distance – 0.2 cm) was determined to be 46,8%

# Thank you for your attention !! ③

