NEUTRON ACTIVATION ANALYSIS FOR LIFE SCIENCES INTERNATIONAL STUDENT PRACTICE 2018, JINR, DUBNA

Motetshwane Adolf | Mametja Lucky | Ntsikelelo Tobinkosi | Mere Angelah | Bailey Tarryn

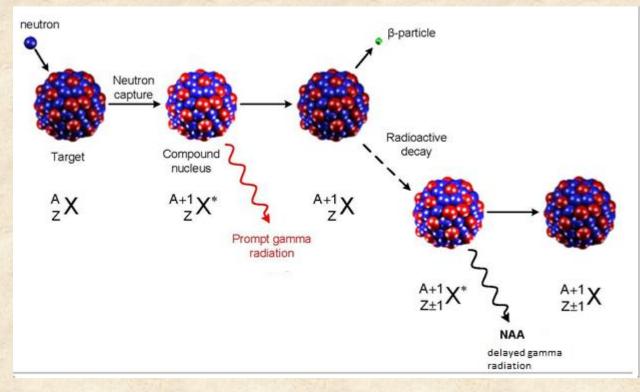
SUPERVISOR: PROF MARINA FRONTASYEVA

Contents

- Introduction
 - Discovery of NAA
 - Principles of NAA
- Types of NAA
 - Why INAA
- Sampling methods
 - Types of sample
 - Sample preparation
 - Irradiation at IBR-2
- Analysis of results (spectrum)
- Applications
- Advantages and limitations of NAA
 - Competing methods.
- Acknowledgements

2

Introduction


Neutron activation analysis (NAA) is an isotope specific analytical technique for the qualitative and quantitative determination of elemental content.

P. Bode, J. J. M. de Goeij, **'Activation Analysis**', Encyclopedia of Environmental Analysis and Remediation, J. Wiley & Sons, New York, **1998**, ISBN 0-471-11708-0, pp 68–84

- 1936: G. Hevesy and H. Levi discovered that rare earth elements became radioactive after being activated by neutrons.
- Element identification = qualitative Element concentration = quantitative
- NAA is a primary analytical technique.

Principle of NAA

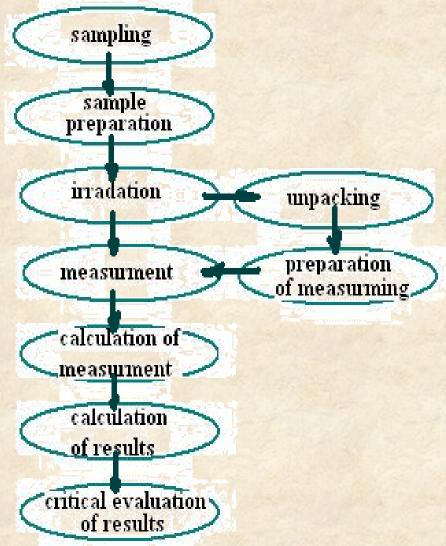
https://nmi3.eu/neutron-research/techniques-for-/chemical-analysis.html

NAA is based on Fundamental facts:

- High penetrability of matter by neutrons
- The probability of (n,γ) reactions on a wide variety of isotopes.
- The characteristic radiation emitted in the specific decay of the unstable nuclei which are formed

Types of NAA

- If the resulting radioactive sample is chemically decomposed, and by chemical reparation the total number of radioanuclides is split-up into many fractions with few radionuclides each: it is refered to as **Radiochemical Neutron Activation Analysis** (destructive).
- If the resulting radiochemical sample is kept intact, and radionuclides are determined by taking advantage of the differences in decay rates via measurements at different decay intervals utilizing equipment with high energy resolution for gamma-radiation: it is referred to as **Instrumental Neutron Activation Analysis** (non-destructive).


Sample preparation

Types of sample

- Geological samples
- Biological samples
- Foodstuffs
- Environmental samples

Experimental Procedure

Environmental sampling

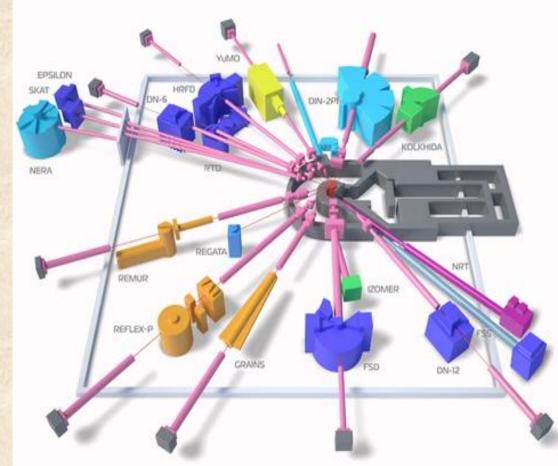
and preparation

Sample Packing

- Moss samples wrapped in polyethylene bag and aluminium pan for short and long-lived irradiations respectively.
- Samples placed in transport capsules
- Short-lived isotopes samples irradiated for 60 seconds
- Long-lived isotopes samples irradiated for 4 days

Irradiation at IBR-2

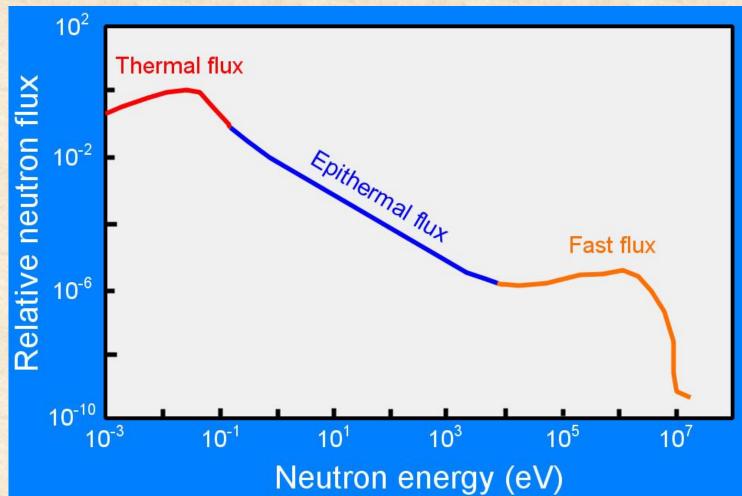
The principal characteristics of spectrometers and spectra analysis

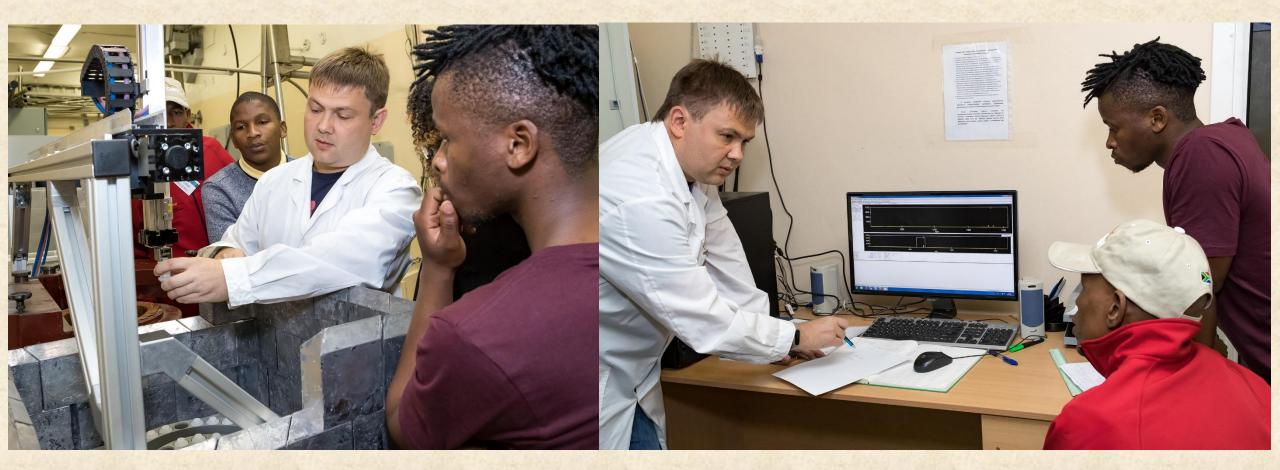

Four HPGe detectors with efficiency 40-55% and resolution 1.8-1.9 keV (Canberra)
Spectrometric electronics - analog type and digital processors (Canberra)

- Automated system for spectra measurement for three detectors

- Software for spectra analysis - Genie-2000 (Canberra)

- Software package for storage of information and automation of all stages of NAA (FLNP JINR)


- Low background detector with low background shield (Canberra) for measurement of environmental samples


Russian European GAte To Africa

- Every atom has a unique excitation energy
- Depending on the sample different neutron flux is required
- Thermal 0.025 eV-0.5 eV
- Epithermal 0.5 eV-100 keV
- Fast 100 keV-25 MeV
- Cd screen is used to suppress thermal neutrons

15 6/22/2018

HPGe Detector

thin entry window • 4 Hyper-Pure Germanium **ү** гау detectors detector 1977 vacuum chamber- Detector crystal cooled by signal out liquid Nitrogen pre-amplifier molecular sieve material copper cold finger liquid nitrogen -Dewar

Analysis of results (spectrum)

Peak Processing:

- Determine the position of peaks in the spectrum
- Obtain peak areas and activities (together with uncertainties)
- Calculate the elemental concentration

<u>GENIE 2000</u>

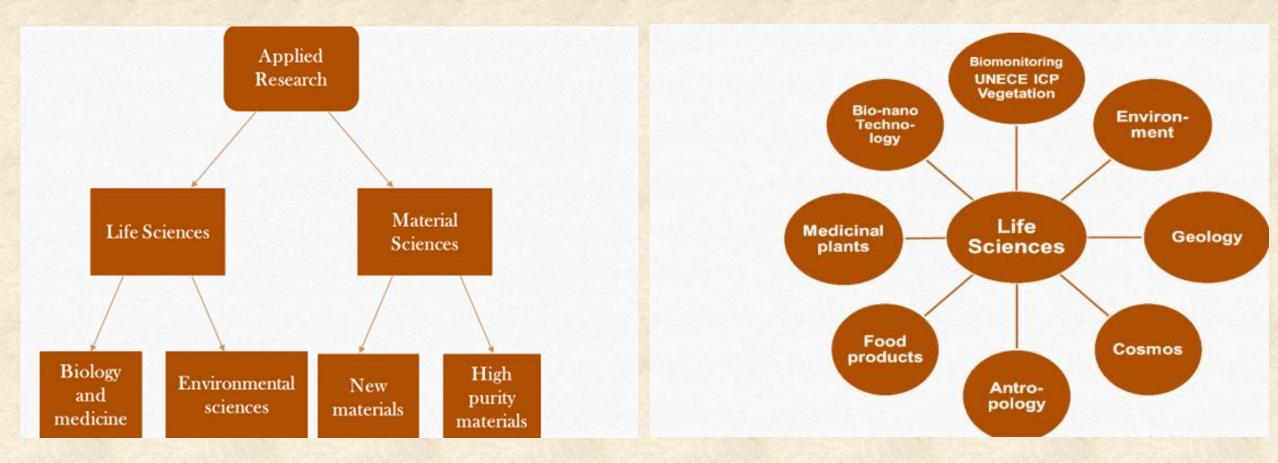
	And the second second															
-	nnel: 2311 :	922.9 keV	Counts: 118	Preset: 9	00/900.00											
quire															- T	VFS =
	Stop															
and O	n								Peak Region	Report				×		
Clear	S								Region Start	840.251 keV	Iterations	3				
I Inde>	-								Region End:	849.837 keV	Chi-squar	e: 3.3				
_	_								Nbr Ene			Error FWF				
sourc		т						÷	1 844.0 2 846.9	37 2113.48 51 2120.77	6279.43 192524.69	3.79 1.5 0.24 1.	87 1.05 452 0.96			
N	ext						and the second									
NFO-									1							
1.000		Acq. Start: 10.10.2017		Elapsed	Preset				Close	telo						
		Dead Time: 3.07%	Live (secs.):	900.000 928.538	900				CROSE	iop						
		Comp. Preset Region: 0 - 0 (channels)	Real (secs.): Total (cnts.):	0.00	0											
							/02									and a second
-								Interactive Peak Fi	and the local design of the second second second						느므느	×
		-	10/-1-2				0	ursor: 840.251 keV	Region Start	840.251 keV	Region End:	849.837 keV				-
	Nuclide Name		Yield	Line MDA	Nuclide MDA (uCi/gram)			Peak Edit	60000			-				
	Name	(keV)	(%)	(uCi/gram)	(uci/gram)	(uCi/gram)		Add Delete								
	NA-24	1368.55*	100.00	7.3261E+000	7.33E+000	7.9233E+001		Set Region Limits	50000			_	0			
	NA 24	2754.05*	99.94	9.9337E+000	7.5524000	7.2718E+001		Set Blight Chris								
	MG-27	170.69	0.80	9.7554E+000	1.65E-001	-3.5873E+000		Recalculate	40000				TA		_	
	110 01	843.76*	71.80	1.6471E-001	11002 001	7.1833E+000		Tiepaturate	C				V/A			
		1014.44*	28.00	1.6282E+000		6.3285E+000		Zoom Unzoom	ů 30000				VIA			
	AL-28	1778.97*	100.00	9.2361E-001	9.24E-001	1.6981E+002	P	Setup	n 30000				1 Alla			
	AL-29	1273.30*	90.60	2.2291E-001	2.23E-001	1.1374E-001		Fit. Filter	t = 20000		-		V///A			
		2028.20	3.70	1.5402E+000		3.9623E-001			* 2000				VIIIA			
		2425.60	5.70	9.2544E-001		-4.1130E-001		Plot Report					VIIIA			
	s-37	3103.98	94.00	3.2428E-002	3.24E-002	1.4863E-002		1000	10000			- 9	VIIIA		_	
>		3741.59	0.26	0.0000E+000		0.0000E+000					1		X/////X.	-	222.022	
	CL-38	1642.69*	31.00	1.2542E+000	1.01E+000				0 836	<u>Š</u> eeee		844 8	346 848		852 854	
		2167.68*	42.00	1.0134E+000		6.0791E+000			6.0	030 0	042	044 0	040	030		
	K-42 CA-49	1524.58* 1408.90	18.80	1.2105E+002	1.21E+002	3.9808E+002			4.0			1.00		_		
	CA-49	2371.70	0.63	2.5169E+001 1.1755E+001	1.09E-001	6.6693E+000 8.6901E-001			D							
		3084.40*	92.10	1.0878E-001		4.7325E+000			e 20	-	1					
>		4071.90	7.00	0.0000E+000		0.0000E+000			1 0.0	-					+	8
53	TI-51	320.08*	93.10	2.9988E-001	3.00E-001	2.7314E-001			d .20							
		608.55	1.18	1.3177E+001		6.2487E+000			-4.0			-	-			
		928.63	6.90	1.2833E+000		4.6926E-001			-4.0	838 84	0 842	844 84	46 848	850	852 854	4
	V-52	1434.06*	100.00	6.8486E-001	6.85E-001	4.0534E+000	-				· · · · · · · · · · · · · · · · · · ·			00000		100
		1530.67	0.12	2.1939E+002		8.9687E+001		Undo Prev	Next M	arkers	OK	Cancel Hel	9			
	MN-56	846.75*	98.90	8.2278E-001	8.23E-001	1.1461E+003	-									_
		1810.72*	27.20	9.6021E+000		1.1420E+003										
	100000000	2113.05*	14.30	1.2049E+001	0.0000000000000000000000000000000000000	1.1355E+003										
	CU-66	833.00	0.16	6.2907E+001	5.51E+000											
		1039.20*	7.40	5.5132E+000		4.2888E+000										
	BR-80	616.30*	6.70	8.6057E+000	8.61E+000	4.8009E+000										
	00.07-	665.80	1.08	1.5441E+001	0.040.001	1.4133E+001										
	SR-87m	388.53	81.90	8.9450E-001	8.94E-001	4.4520E-001										

Concentration Program

		Пересчёт активн		90	центрация	Таблица н	нуклидов	Очистить фо	орму							
		Пересчёт активно			201				3		-		and the second		19-110-	
		14 Mar.	Mg SLI-2		Al SLI-2		Cl SU-2		Ca SLI-2		Ti SLI-2		V SLI-2		Mn SLI-2	
Имя бразца	SLI-2	Conc, mg/kg	Err, %	Conc, mg/kg	Err, %	Conc, mg/kg	Err, %	Conc, mg/kg	Err, %	Conc, mg/kg	Err, %	Conc, mg/kg	Err, %	Conc, mg/kg	Err, %	
i-01	7004845.CON	1170	7	539	5	72	13	3860	15			1,08	8	551	7	
i-02	7004846.CON	1090	7	506	5	91	13	2860	15	84	27	0,94	8	680	7	
i-03	7004847.CON	1850	7	888	5	100	13	4660	15	94	29	1,92	6	206	7	
i-04	7004848.CON	1660	6	514	5	101	12	4590	15			1,4	7	315	7	
		Файл активносте									-					
	A Contraction	· · · · · · · · · · · · · · · · · · ·		лов мониторов Коэффициент изменения потока нейтронов												
	THE TOWN	Источник данных ЮКИ КОКИ-1 и ЮКИ-2 Системат						матическая г	югрешность,	%:	0					
		Рассчитать и сохранить концентрации														
	15-7-7	Файлы концентраций элементов исследуемых образцов: не выбраны														
		Укажите точность округления %: 1														
		Создать промежуточную таблицу концентраций элементов														
	Contraction of the second	Создать окончательную таблицу концентраций элементов														

Elements measured using NAA

NAA + AAS



NAA ~ 55 elements

Applications of NAA

Applications of NAA

<u>Application of INAA</u> <u>in Life Sciences</u>

- Biomonitoring: use of living organisms to determine changes in the environment: Passive and active approach.
 - Biomonitoring of atmospheric deposition of heavy metals and other elements.
 - Active biomonitoring of air pollution in Baku, the capital of Azerbaijan (FLNP)
- Control of quality and safety of the foodstuff, grown in industrially contaminated areas.
- Assessment of different ecosystems and their impact on human health.
- Analysis of cosmic dust

Advantages and Disadvantages of NAA

Advantages

- High accuracy
- High sensitivity
- High precision
- Low detection limits
- Non-destructive analysis (INAA)
- The chemical form and physical state doesn't influence the results
- Limited sample handling.
- Multi-element analysis
- Simultaneous identification of elements

Limitations

- A reactor is required for high energy neutrons
- Samples remain radioactive for some time after activation
- This requires special training and handling for radioactive materials

Competing technique

ICP-MS: Inductively coupled plasma mass spectrometry

- ICP-MS is used to detect metals and certain non-metals.
- The sample must be dissolved before it is introduced into the ICP plasma. Here it is converted into a gaseous form and ionized.
- A mass spectrometer is used to separate the ions based on their massto-charge ratio. This allows ICP-MS to supply isotopic information.

Continued....

- Can't easily determine elements that form negative ions like Cl, I, F...
- ICP-MS is a destructive method that requires dissolved samples. Therefore it has a lower throughput than INAA because samples may not be thoroughly dissolved.
- Used in the medical and forensic field for toxicology. It is also used for detection of inorganic impurities in pharmaceuticals.

Conti...

Criteria	ICP-MS	NAA
Price	5x	X
Multi-elemental	+	+
Non-destructive		+

What we learnt

- We learned about NAA and its applications in biology, medicine and environmental studies.
- NRF and JINR exposed students from South Africa, Zimbabwe and Botswana to advanced research and facilities.
- This student practice supports the development of students at a world class standard.

Proposed Projects

Proposed Project

Our acquaintance with Neutron Activation Analysis and the projects which are carried out here for air pollution inspired me to carry out similar research in North-West.

NORTH WEST, SOUTH AFRICA

Acknowledgements

We would like to acknowledge and thank the following:

- NRF
- iThemba LABS
- JINR
- JINR Staff
- Prof Marina Frontasyeva, Staff of the NAA and applied research unit in the FLNP
- Julia and Elizabeth
- Prof Lekala, Dr Peane Maleka, Ms Motsakwe Rakgoale

