Monte Carlo Dose Calculations for Irradiation of Foods (meat) using Electrons and X-rays Beams.

Otsile Tikologo

Frank Laboratory of Neutron Physics (FLNP)

Project supervisor: A. Rogov

2 Food Irradiation

Outlook

5 Acknowledgements

Otsile Tikologo (**Frank Laborato**Monte Carlo Dose Calculations for Irradiation Project supervisor: A. Rogov 2 / 21

- Study how electron radiation interact with matter (meat) using FLUKA
- Use FLUKA to design an optimal radiation shielding infrastructure for the Rhodotron facility

- Use of ionizing radiation (electrons, X-rays and gamma rays) to reduce the population of, or prevent the growth of, undesirable biological micro-organisms in food.
- Sources of ionizing radiation:
 - Radioactive isotopes
 - Electron accelerators

Food Irradiation

- Use of ionizing radiation (electrons, X-rays and gamma rays) to reduce the population of, or prevent the growth of, undesirable biological micro-organisms in food.
- Sources of ionizing radiation:
 - Radioactive isotopes
 - Electron accelerators

Principle Applications of Food Irradiation

- Low dose (up to 1 kGy):
 - -Inhibit sprouting
 - -Delay ripening of fruits

- Low dose (up to 1 kGy):
 -Inhibit sprouting
 -Delay ripening of fruits
- Medium dose (1 kGy to 10 kGy): -Extend shelf-life (seafood, fresh produce, meat products)

- Low dose (up to 1 kGy):
 -Inhibit sprouting
 -Delay ripening of fruits
- Medium dose (1 kGy to 10 kGy): -Extend shelf-life (seafood, fresh produce, meat products)
- High dose (above 10 kGy)
 Sterilization of spices, dry vegetable seasonings
 Sterilization of hospital foods

What is FLUKA? FLUktuierende KAskade is a versatile tool for calculations of particle transport and interactions with matter. What is FLUKA?

FLUktuierende KAskade is a versatile tool for calculations of particle transport and interactions with matter.

- Accelerator shielding to target design
- Activation
- Dosimetry
- Detector design
- Medical applications e.g. treatment planning

FLUKA simulations

Dose depth plots for 10 MeV electron beam

- Electrons penetrates depth of approx 5 cm
- Single-sided E-beam irradiation
- Conveyor system used for double-sided irradiation
- If areal density $> 8.5 \text{ g/cm}^2$, X-rays used

E-beam to X-rays conversion

- Use high-Z (Ta-target) to convert electrons to X-rays
- Optimum thickness 1.7 mm
- X-rays for treatment of high density products

Otsile Tikologo (**Frank Laborato**Monte Carlo Dose Calculations for Irradiation Project supervisor: A. Rogov 13 / 21

Dose distribution on meat

Photon distribution plots

Dose Equivalent plots

Design an optimal radiation-shielding infrastructure for the Rhodotron facility

Characteristics of the Rhodotron accelerator

- A compact continuous-wave high intensity industrial recirculating electron beam accelerator.
- 1 MeV \leq E \geq 10 MeV.
- Relatively new

Rhodotron industrial applications

Otsile Tikologo (**Frank Laborato**Monte Carlo Dose Calculations for Irradiation Project supervisor: A. Rogov 19/21

A typical Rhodotron facility layout

Acknowledgements

Otsile Tikologo (**Frank Laborato**Monte Carlo Dose Calculations for Irradiation Project supervisor: A. Rogov 21 / 21

3