POSITRON ANNIHILATION SPECTROSCOPY IN MATERAILS STRUCTURE STUDIES SUPERVISOR: DR KRZYSZTOF SIEMEK (DLNP IN JINR)

DVZHELEPOV LABORATORY OF NUCLEAR PROBLEMS (DLNP)

GOUWS VERONICA KGABISANG

MAFIKENG CAMPUS

OUTLINE

• AIM

INTRODUCTION

- Methods of positron annihilation spectroscopy
- ✤ Na-22 Decay Scheme
- Positron Lifetime Technique Measurements
- Doppler Broadening Spectroscopy

• METHODOLOGY

- Sample Preparation
- Pressing Procedure
- AnnealingPositron Li
- Positron Lifetime Spectroscopy Measurements
- Doppler Broadening Spectroscopy Measurements
- RESULTS AND DISCUSSIONS
- CONCLUSION
- ACKNOWLEDGEMENTS

<u>AIM</u>

To study the Recovery and Recrystallization process in pure Titanium.

INTRODUCTION

METHODS OF POSITRON ANNIHILATION SPECTROSCOPY

 Positron Lifetime Spectroscopy -measures the elapsed time between the implantation of the positron into the material and the emission of annihilation radiation.

Figure 1: Methods Positron annihilation Spectroscopy

Na-22 DECAY SCHEME

Figure 2: Decay scheme of the radioactive isotope Na-22.

POSITRON LIFETIME TECHNIQUE

- Positron annihilation lifetime spectroscopy is a nondestructive spectroscopy technique to study voids and defects in solids.
- Positron lifetime is measured as time difference between 1.27
 MeV quantum (β⁺ decay) and 0.
 115 Me V quanta.

Figure 3: Positron annihilation lifetime Spectroscopy.

DOPPLER BROADENING SPECTROSCOPY

- The electron momentum in propagation direction of 511 KeV γrays leads to doppler broadening of annihilation line.
- This can be detected by Ge detector and standard electronics.

$$E_g = mc^2 + E_B \pm \frac{P_L C}{2}$$

 E_B - binding energy of electronpositron pair

Figure 4: Doppler broadening Spectroscopy Setup.

METHODOLOGY

SAMPLES PREPARATION

- Titanium samples were polished with waterproof abrasive paper.
- The samples were cleaned with pure Acetone to remove dust and any surface contamination.
- All samples were annealed 850 C to remove defects.

PRESSING PROCEDURE

- The samples were pressed under a static pressure from 4.5 to 11.5 MPa for 1 minute at room temperature.
- The thickness of the samples were measured using Micrometer screw.

Figure 6: Micrometer Screw

Figure 5: Hydraulic press

<u>ANNEALING</u>

- The annealing treatments were carried out in a vacuum 10^{-4} Pa with temperature being controlled.
- The series of samples were heated at the temperature range from 100-850°C for 1 hour.

Figure 7: Vacuum system.

Furnace

POSITRON LIFETIME SPECTROSCOPY MEASUREMENTS

- The 22_{Na} were placed between the identical Titanium samples and attached to two photomultiplier and computer display.
- The samples were analysed for 3 hours.

ADC

Titanium samples attached to two photomultipliers.

Figure 8: Positron Lifetime Spectroscopy setup.

Computer display

DOPPLER BROADENING SPECTROSCOPY MEASUREMENTS

- The samples were placed near the high-purity(HP)-Ge detector and standard electronics with energy resolution of about 1.2 KeV at 511 KeV.
- The samples were analysed for 2 hours in the detector system.

Liquid Nitrogen

Computer display

Power systemTitanium Sample(DBS-Stage)Figure 9: Positron Doppler BroadeningSpectroscopy Equipment.

S- AND W- PARAMETERS CALCULATIONS

$$E_g = mc^2 + E_B \pm \frac{P_L C}{2}$$

• *E_B*- binding energy of electronpositron pair

S-Parameter

• Relation of area under central part of annihilation line A_s to total area below this line A. $S = \frac{A_s}{A_0}$

<u>W-Parameter</u>

 $W = \frac{A_W}{W}$

Sum of the area under wings of the spectrum.

Figure 10: Comparison of annihilation for defected and non-defected samples. The rule of calculation of S-and W-parameters

THICKNESS REDUCTION

- The pressing procedure increases number defects on the sample.
- The S-parameter increases with the thickness reduction of the sample.

Figure 11: The measured S-parameter on the thickness reduction of the Ti sample.

RESULTS AND DISCUSSIONS

RECOVERY AND RECRYSTALIZATION

 Are changes in microstructures of an atom during annealing temperature.

• $S = S_g + (S_b - S_g) \frac{L_+}{R} \left[coth\left(\frac{R}{L_+}\right) \right] - \frac{L_+}{R}$, • $\tau = \tau_g + (\tau_b - \tau_g) \frac{L_+}{R} \left[coth\left(\frac{R}{L_+}\right) \right] - \frac{L_+}{R}$,

• Where S_b and S_g -S-parameter. • $R^m = R_0^m + t \exp\left(-\frac{Q_m}{kT}\right)$, • Where R_0 - initial grain radius; • R - mean radius; • m - grain growth exponent; • t - time.

J.Dryzek, M. Wrobel, and E.Dryzek. Phys.Status solidi, 1-12 (2016).

temperature of deformed Ti.

Figure 14: Positron lifetime dependency on annealing temperature.

CONCLUSION

The aim was to study the **Recovery** and **Recrystallization** on **pure Titanium**. According to obtained results of the positron lifetime, it tells that the type of defects formed are **Vacancies on the dislocation line**. From the dependencies of the positron lifetime and the S-parameter, activation energy of boundary migration Q_m was determined and equal to **1.62 eV**.

ACKNOWLEDGEMENTS

iThemba

Laboratory for Accelerator Based Sciences

