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Types of nuclear reactors 
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What is an Accelerator Driven System 

(ADS)? 

 ADS is a subcritical fourth (IV) generation reactor 

that is controlled by a beam from an accelerator. 

 

  Critical : Keff =1 

  Supercritical : Keff > 1 

  Subcritical: Keff < 1 

 

 Additional neutrons are taken from the 

accelerator.  
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Advantages of ADS 

 Enhanced safety. 

 Reduced nuclear waste because the system has a closed fuel 

cycle (fuel can re-used) 

 Possibility to transmutate long-lived radioactive waste into short-

lived or non-radioactive waste. 
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The QUINTA experimental set-up 
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• The Quinta assembly, consists of a 

total of 512 kg of natural uranium. 

 

•  It is composed of five sections and 

the first section has a hole/beam 

window which is 80 mm in diameter 

and serves to reduce the loss of 

backward emitted/scattered 

neutrons.  



Why do we carry out Quinta 

experiments? 
 The Quinta experiments help to simulate the 

ADS system. 

 

Comparison of experimental results with 

results from theoretical calculations. 

 

Make improvements on simulation codes 

e.g FLUKA, MCNPX and GEANT. 

 

 Better projection of future nuclear reactors. 
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Measurement of gamma-rays using a HPGe 

detector  9 

Background measurement 

Measurement of gamma-rays 

from the irradiated Y-89 probes. 



Analysis of gamma spectra using the 

DEIMOS program. 10 
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From shielding 
material 
208Tl 
212Bi 
212Pb 
214Bi 
214Pb 
From the ground 
220Rn 
224Ra 
228Th 
40K 
Identified 

radionuclides 
88Y 
75Se 
83Rb 
85Sr 



Calibration and normalization of measured 

results 12 
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where B  number of nuclei per 1 gram of a sample material per 1 

  primary deuteron [nuclei/g/deuteron] 
 N1 peak area (line) – number of counts 
 Nabs the absolute intensity of given line in percent [%] 
 p(E) detector efficiency function of energy (polynomial) 
 COI(E,G) cascade effect coefficient function of energy and geometry 
 ∆S(G) calibrations function for thickness and shape of detectors  

 ∆D(E) calibrations function for self absorption inside the detectors 
 I total number of primary deuterons 
  t1/2 half life time [s] 
 tira elapsed time of irradiation [s] 
 t+ elapsed time from the end of irradiation to the beginning of  
  measurement [s] 

 treal elapsed time of the measurement [s] 
 tlive “live” time of measurement [s] 
 m mass of the sample (target) in grams [g] 

 



Radioisotope production level 
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Average neutron flux density calculation 

for the three energy regions 14 

Radioisotope Threshold 

reactions  

Energy 

(Mev) 

Half-life 

88Y (n, 2n) 11.5 106.65 d 

87Y (n, 3n) 20.8 79.8 h 

86Y (n, 4n) 32.7 14.74 h 

85Y (n, 5n) 42.1 2.68 h 

84Y (n, 6n) 54.4 39.5 m 

Nuclear threshold reactions are of the form (n, xn) 

 
89Y(n, 2n) 88Y 

 

89Y + 1n           88Y + 2n 
 

 
 

 

 

Energy range divided into 3 parts 

because of threshold reactions. 

  

11,5 – 20,8 MeV (n,2n) 

20,8 – 32,7 MeV (n,3n) 

32,7 – 100 MeV  (n,4n)  

 

We need the microscopic cross section for (n, xn) reactions 



Average neutron flux density calculation 

for the three energy regions 
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Conclusion 

 Knowledge on the neutron flux density will be useful in 
the construction of fourth generation ADS subcritical 
nuclear reactors. 

 

 The radioisotope production level will help determine 
where to position the transuranic isotopes in the reactor 
for better transmutation efficiency. 

 

 The point of maximum neutron flux density is about 13 cm 
from the beginning of target 

 

 We can see that Y-89 is a very good material for creating 
activation detectors.  
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