
PCR assay of the molecular alteration at vestigial genes of Drosophila melanogaster produced spontaneously or by radiation

Paulina Haluskova
Andrea Lorinczi
Marius-Catalin Dinca
Dana Nicoleta Gurau
Filip Orzan

• Igor D. Alexandrov, Ph. D. Dr. Sci. (Biology), chief. Sci. res.

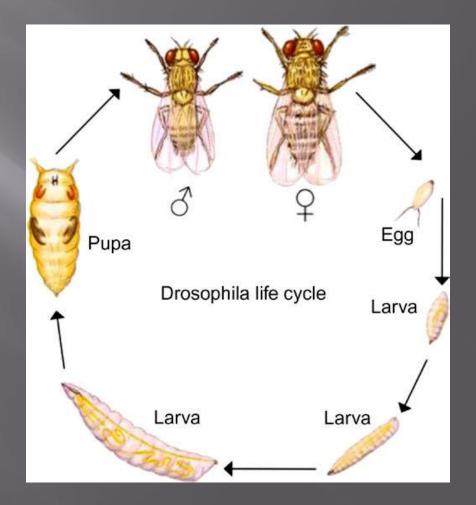
•Kristina P. Afanasyeva, Ph. D., sci.res.

Genetic Group, Laboratory of Nuclear Problems Joint Institute for Nuclear Research

Content

• Aim of project	3
•Why Drosophila?	4
• Effects of irradiation	5
•Methods (protocol)	7
-Isolation of DNA	8
-PCR	12
-Gel Electrophoresis	13
•Scheme of vestigial gene	14
• Visualization of electrophoresis in UV light	15
•Measurement and results	17
• Conclusions	19
• Bibliography	20

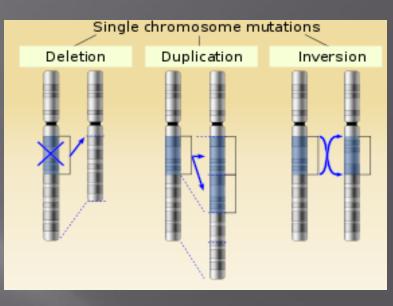
Aim of project

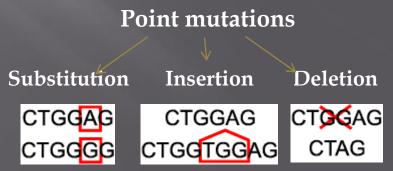

Investigation of mutation induced by γ-rays and neutrons

Comparing spontaneous mutations with those induced by radiation

Learning the structure of the gene to detect the location of different damages in wild type and mutants

Why Drosophila


- The insect has relatively short life;
- The promiscuous nature and high rates of reproduction of Drosophila;
- Has common principal DNA structure with humans;
- Permits the study of heritable gene mutation



Effects of radiation

γ-rays ⁶⁰Co

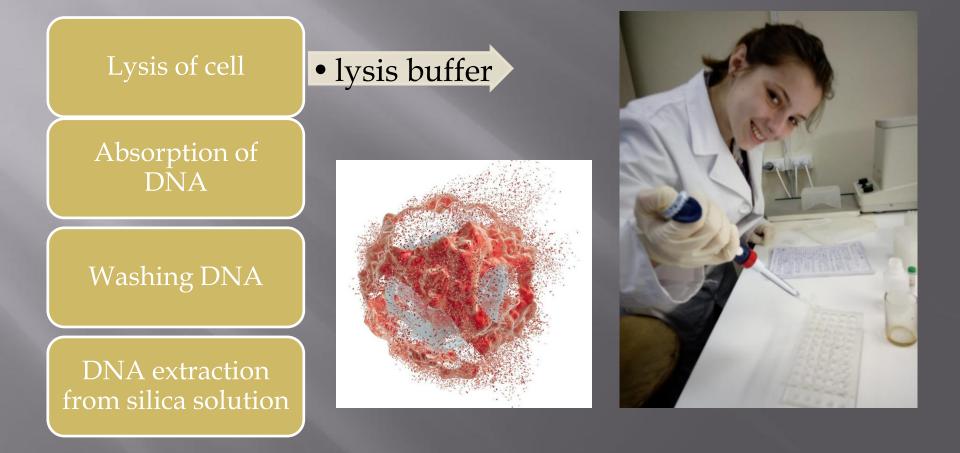
- a source of radiation : "Gamma-cell-220"
- dose: 5-40 Gy
- N=5,7 Gy/min
- LET: 0.3 keV/micron
- Monoenergetic neutrons
 - a source of radiation : reactor BR-10, Obninsk
 - dose: 2,5–20 Gy
 - N=2,6 Gy/min
 - LET: 78 keV/micron
- damage of DNA \rightarrow mutations

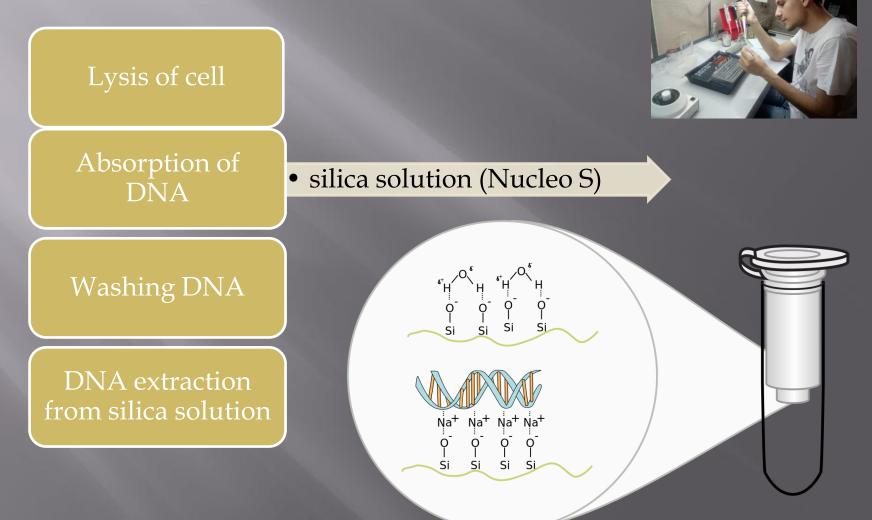
Visible effects of mutations

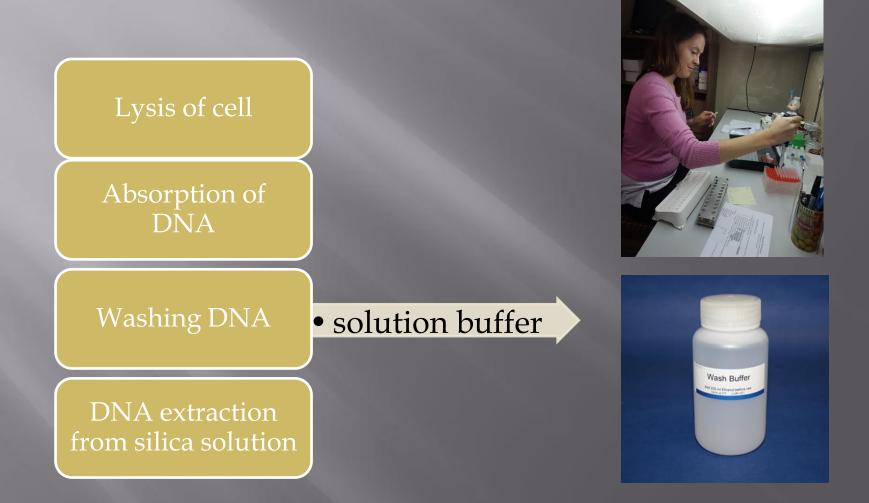
Picture **1**. Wild phenotype of *Drosophila melanogaster*

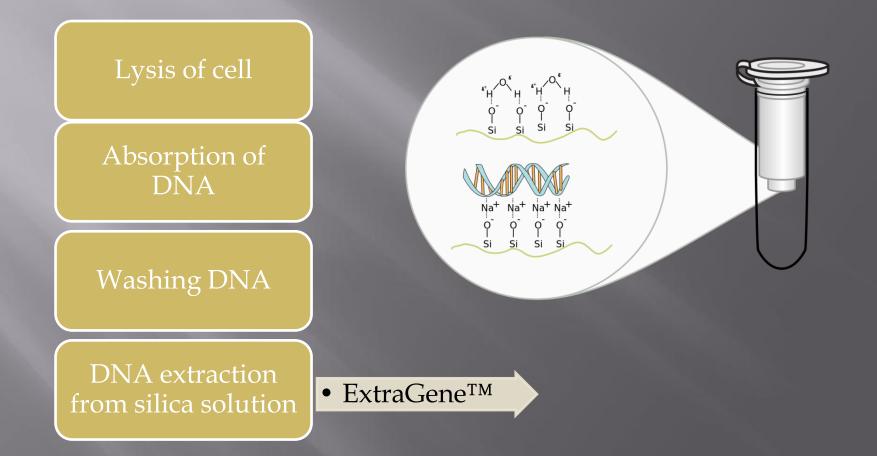
Picture 2. Phenotypes of vestigial, black, cinnabar, yellow, white

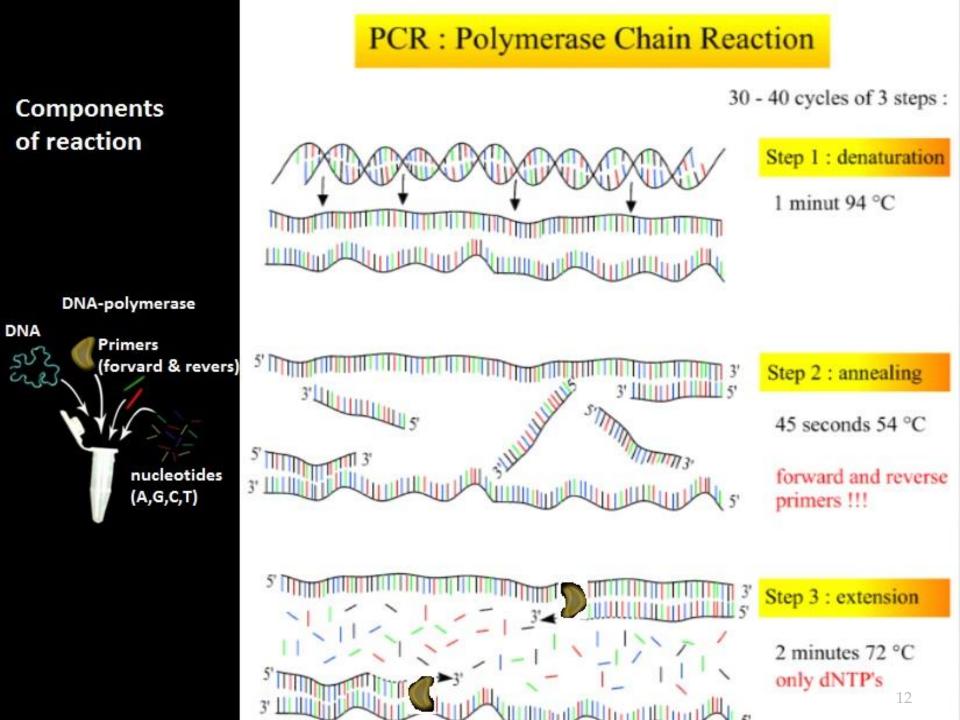
All of the studied flies are from next filial generations of irradiated subjects.

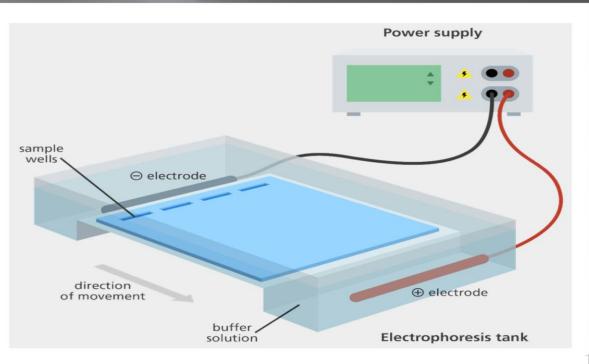


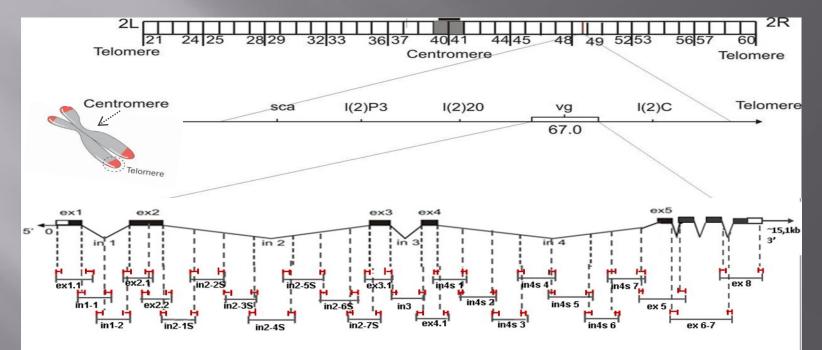

METHODS




2 Polymerase chain reaction


3 Gel Electrophoresis

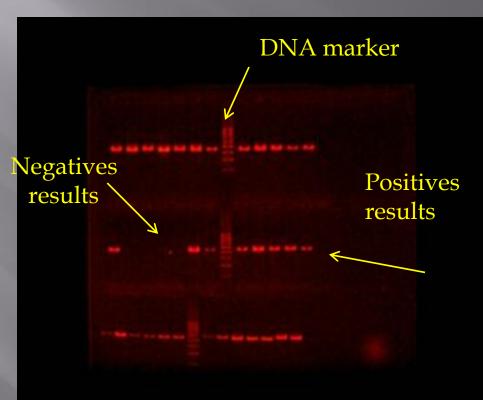



3. Gel Electrophoresis

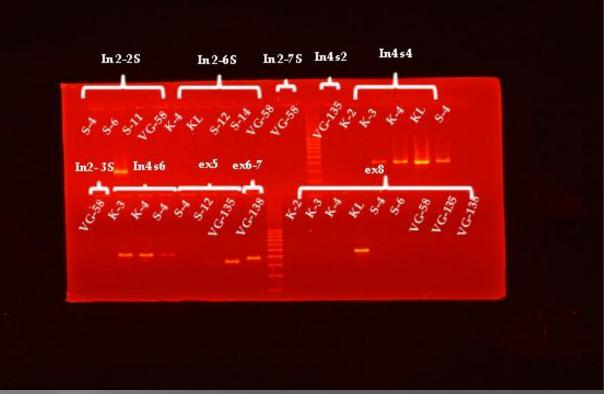
- DNA has negative charge
- separation of DNA fragments on 1% agarose gel
- visualisation: ethidium bromide + UV

Scheme of vestigial gene

25 fragments of vestigial gene


12 lines: wild, spontaneous and irradiated We can find the fragment where a mutation occurred

Visualization of Electrophoresis Using UV Light



Visualization of Electrophoresis Using UV Light

Different fragments with different size
Our resolution 50 base pair

Measurement and results

		fragment of the vestigial gene																								
						_	_			_	_	frag	gmento	f the ve	stigialg	e ne	_					_				
		E41.1	in1-1	ins-2	ex2.1	ex2.2	21-2ni	in2-25	ing-as	in2-45	in2-75	in2-65	in2-75	ex3.1	int	244.1	in4s 1	in4s2	in4s3	in4s4	in4s 7	in4:6	ints?	84.7	ex6-7	842
		£476j	1630b)	(\$000a)	[794b]	(7 17 b)	£44bj	já 76 b)	j624bj	(7 %)	[771b]	(C 72 b)	(726 b)	[# 10b]	F 12 bj	(732 b)	P276	£ 10bj	PIEN	pos 6j	[736 b]	£ 70 bj	(# 35 b)	(\$01b)	[722b]	j620b)
name of	sorse of																									
line	radiation, dose	1	2	1	4	ų ,	6	7	:	,	\$0			-	14	13	15	17		19	20	21	22	23		25
K-2		+		-	+	+	+	+	+	+	+	+	+	-	-	+	+	+	+	-	+	+ +	+	+	+	-
K-3		+	+	_	+	+	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+	• •	+	+	+	-
K-4		+	+	+	+	-	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	• +	+	+	+	-
ĸL		+	+	+	+	-	+	+	+	+	+	-	+	-	-	+		Ŧ	+	+	-	• •	+	+	+	+
5-4	spomenious	+	-	-	+	+	+	-	+	+	+	+	+	-	+	+	+	+	+	+	+	•	+	-	+	-
5-6	spontenious	+	-	-	-	-	+	+	+	+	+	+	+	-	+	+	-	+	+	+	+	•	+	+	+	-
5-11	spontenious	+	-	+	+	-	+	_	+	+	+	+	+	-	-	+	+	+	+	+	+	• •	+	+	+	+
5-12	spontenious	+	-	+	+	-	+	+	+	+	+	-	+	_	-	+	-	+	+	+	+	• •	+	+	+	+
5-14	spontenious	+	+	+	+	-	+	+	+	+	+	+	+	+	-	+	-	+	+	+	+	• •	+	•	+	+
vg 58	y, 40	+	+	-	+	+	+	-	-	-	+	-	-	-	+	+	+	+	+	+	+	•	+	+	+	-
vg 135	n, 10	+	+	-	-	-	+	+	+	+	+	+	+	-	+	+	+	-	+	+	+	+	+	+	+	-
	n, 10	+	+	-	+	+	+	+	+	+	+	+	+	_	+	-	-	+	+	+	-	•	+	+	+	-
κ		-	T T	+	+	+	-	+	•	-	+	+	+	- +	•			+	l +	-		-	+	-	-	
-			_		_	_	_		_	_	_	_			_	_	_	_	_		-	-	-		_	

Gold rule: we repeat all our negative results!

We have one fragment mutation

two fragments mutations

three or more mutations

Measurement and results

Т											fingment of the vestiging ene																
		l l	ex1.1	in1-1	ins-2	ex2.1	ex2.2	in2-15	ing-25	ing-as	in2-45	in2-75	in2-65	ing-75	1.549	int	244.1	in4s 1	in4s2	in4s2	in4c4	in4: 7	in4c6	ints?	84.7	CAS-7	642
			£476j	(#306)	(6000a)	[794b]	(7 17 b)	£44bj	ji 76 bij	jii 246)	P 301	[771b]	(# 72 b)	(P26b)	[# 10b]	£126j	P326	(727b)	£ 10b)	(726 b)	p(cb)	(P36 b)	£ 75 bj	(7 % b)	(\$01b)	P226	j620bj
1	arme of	sorse of																									
•	line	radiation, dose	1	2		4	, ,	6	7	:	,	\$0	11	12	13	54	13	1 15	17	9 2	19	2	0 2	1 22	2	24	23
L P	2		+	-	_	+	+	+	+	+	+	+	+	+	-	-	+	+	+	+	-	+	+	+	+	+	-
2 1	-3		+	+	_	+	+	+	+	+	+	+	+	-+	-	+	+	+	+	+	+	+	+	+	+	+	_
3 1	4		+	+	+	+	-	+	+	+	-	+	-	-	+	+	+	-	+	-	+	+	+	+	+	+	-

Control K 2-4: normal phenotype but several mutations!

Constructve line KL: all mutations are presented (black, cinnabar, vestigial, yellow and white)

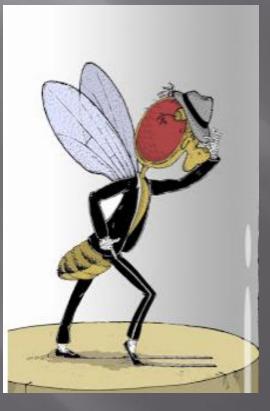
											_					_	-	-	-	-	-	-	-		-		
4 K	L I		+	+	+	+	_	+	+	+	-	+	-	+	-	-	+	+	+	-	+	+	+	+	+	+	+
5 s	4	sportenious	+		_	+	+	+	_	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	_	+	-
6 5	6	s ponte nious	+	_	_	-	-	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+	-	+	+	+	-
7 s	11	s ponte nious	+	_	+	+	-	+	-	+		+	+	+	-	-	+	+	+	+	+	+	+	+	+	+	+
3 5	12	s ponte nious	+	_	+	+	-		+	+	+	+	_		-	-	+	-	+	+	+	-		+	+	+	+
9 5	14	s ponte nious	+	+	+	+	-	•	+	+	+	+	+	-	+	-	+	+	+	+	+	-		+	+	+	+

Spontaneous mutations

		4		_									_		 											
1	vg 58	y, 40		+		• •	-	+			-	+		-	+				• •			-	-	+	+	
2	vg 135	n, 10		+			-	+	+	+	+	+	+	+	+	+	+	-	+	+	-	+	+	+	+	
3	vg 133	n, 10	-	+	-	• •	+	+	+	+	+	+	-	+	+	-+	+		+	+	+	+	+	+	+	

 γ -rays and neutron irradiated

Conclusions


By PCR and electrophoresis we found the specific fragments in our gene where mutation appeared

In order to precisely tell which mutations have been responsible for the changes in the phenotype of drosophila, sequencing is needed

Bibliography

- Afanasyeva, K.: Molecular genetics and radiobiology
- Edvotek: Drosophyla Genotyping Using PCR
- Harca, I.: PCR-assay of intragenic DNA lesions induced by radiation in Drosophila germ cells
- https://biopharma.co.uk/blog/2016/12/08/high-pressurehomogenisation-for-efficient-cellular-lysis/
- https://www.pharmatutor.org/articles/extraction-andpurification-of-nucleic-acid-using-column-based-nucleicacid-purification-pcia-technique

THANK YOU FOR YOUR ATTENTION!

