XRD characterization of orthoferrites YFeO₃ and HoFeO₃

Joint Institute for Nuclear Research

E BRINGING NATIONS

SUBACOS DOCE SUBACOS DOCES DOCE SUBACOS DOCES DOCE SUBACOS DOCES DOCES SUBACOS DOCES DOCES SUBACOS DOCES DOCES SUBACOS DOCES DOCES DOCES SUBACOS DOCES DOCES DOCES DOCES SUBACOS DOCES DOCES

Natalia Majewska¹, Viktoriia Drushliak² Supervisor: dr. Janusz Waliszewski³

¹ Faculty of Applied Physics and Mathematics, Gdańsk University of Technology
 ² Faculty of Physics, University of Białystok
 ³ Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research

- Tasks
- Orthoferrites
- XRD measurements
- Crystallografic structure
- Results
- Conclusions

- 1. Sample preparation for X-ray diffraction.
- 2. Realization of diffraction measurements.
- 3. Diffractograms analyzes refinement of the structure by the Rietveld method.
- 4. Electron density distribution calculation.

Orthofferites

crystal structure: **orthorhombic** space group: **Pbnm**

FIG.1. Crystallographic structure of perovskite ABX₃

Orthoferrites

- Mutiferroism

 (antiferromagnetism, ferromagnetism, ferroelectricity)
- small anisotropy of Fe spins in a – c plane, and large anisotropy towards b axis,
- spin reorientation.

The R ionic moments in orthoferrites RFeO₃ affect the crystal field of Fe ions. It can be expected that R may affect the magnetic properties of orthoferrites RFeO₃ in aspects.

APPLICATION:

- Catalysis,
- gas separating,
- fuel cells,
- Sensing,
- magnetooptic device,
- environmental monitoring,
- spin valves,
- advanced information storage
- etc.

XRD measurements

15° - 118° step 0.001°

Co $K_{\alpha 1}$ (λ = 1.7890 A) $K_{\alpha 2}$ (λ = 1.7929 A)

T = 20, 90, 160, 230, 295 K

FIG.2. X-ray diffractometer Empyrean PANalytical (left) and sample holder (left)

FIG.3. X-ray diffraction pattern of orthoferrite $HoFeO_3$. Sample revealed additional phase $Ho_3Fe_5O_{12}$

FIG.4. X-ray diffraction pattern of orthoferrite $YFeO_3$. Sample revealed additional phase $Y_3Fe_5O_{12}$

Crystallographic structure

HoFeO₃

Unit cell	a = 5.278 Å b = 5.591 Å c = 7.602 Å
Space group	Pbnm (n° 62) Ohrthorombic
YFeO ₃	
Unit cell	a = 5.2819 Å b = 5.5957 Å c = 7.6046 Å
Space group	Pbn21 (n° 33) Ohrthorombic

Crystallographic structure

Rietveld method HoFeO₃

77.73% - HoFeO₃ 22.27% - Ho₃Fe₅O₁₂

Rietveld method YFeO₃

95.8% - YFeO₃

4.2% - Y₃Fe₅O₁₂

- 1. Crystal structure of the compounds $HoFeO_3$ and $YFeO_3$, was studied by powder X-ray diffraction (XRD).
- 2. In both material two phases were noticed: (Ho,Y)FeO₃ (orthoferrite) and (Ho,Y)₃Fe₅O₁₂.
- 3. Rietveld refinement was applied for this samples.
- 4. The precentage contents of both phases were determinated:
- 77.73% HoFeO₃, 22.27% Ho₃Fe₅O₁₂
- 95.8% YFeO₃, 4.2% Y₃Fe₅O₁₂
- 5. Temperature dependences of lattice constatnts a,b,c were determinated.

Thank you for your attention!

