Cosmic ray measurements – using those detectors in huge physical experiments as LHC or NICA

Sylwia Bazak, Arkadiusz Foks, Regina Stachura, Mariusz Tomczyk, Piotr Wawrzyńczak

(Institute of Physics, Jan Kochanowski University, Kielce)

Magdalena Kołodziej

(Jagiellonian University, Cracow)

Project supervisor: dr Marcin Bielewicz

(National Centre for Nuclear Research, Świerk)

e-mail: marcin.bielewicz@ncbj.gov.pl

0

JOINT INSTITUTE FOR NUCLEAR RESEARCH

Outline

- NICA Project
- Cosmic rays

- Cosmic Watch Project
- Measurements, results and analysis

NICA MULTI PURPOSE DETECTOR (MPD)

0

NICA MPD scheme [1]

Cosmic rays detector [2]

MCORD – MPD Cosmic Ray Detector MCORD surround MPD detector

Cosmic Rays – content [3]

Primary particles:

- Protons (90%)
- Alpha particles (9%)
- Heavy nuclei (1%)

Secondary particles:

- Pions
- Kaons
- Muons
- Protons
- Electrons and γ

Cosmic Shower

Cosmic Rays – sources [4]

- Solar activity
- Supernova explosion
- Pulsars
- Active galactic nuclei

Salactic Cosmic Rays

Solar Energetic Particles (Solar Particle Events or Coronal Mass Ejections)

Salactic Cosmic Rays

Cosmic Watch [5]

- Scintillation detector
- Designed for detecting and counting muons

Detector components

Custom designed PCB to shape the signal

Measurements

SiPM (Silicon Photomultiplier)

- Low-light signal
- Low voltage operation
- Insensitivity to magnetic fields
- Uniformity of response
- Small size (6mm x 6 mm)

Detector components

Open-source micro-controller

16 MHz Arduino Nano ATmega328 to perform the measurement

Features

- Threshold trigger
- Amplitude measurement
- SD cards / screen
- Total counts
- Counting rate
- Time
- Dead time

Arduino - programming

💿 kod_detektor | Arduino 1.8.5

Plik Edytuj Szkic Narzędzia Pomoc

kod_detektor

<pre>#include <adafruit_ssd1306.h> #include <adafruit_gfx.h> #include <timerone.h> #include <wire.h> #include <spi.h> #include <spi.h> #include <eeprom.h></eeprom.h></spi.h></spi.h></wire.h></timerone.h></adafruit_gfx.h></adafruit_ssd1306.h></pre>	
<pre>const byte OLED = 1;</pre>	// Turn on/off the OLED [1,0]
<pre>const int SIGNAL_THRESHOLD = 50; const int RESET_THRESHOLD = 15;</pre>	<pre>// Min threshold to trigger on. See calibration.pdf for conversion to mV.</pre>
<pre>const int LED_BRIGHTNESS = 250;</pre>	// Brightness of the LED [0,255]
<pre>const long double cal[] = {-9.085681659276021e-27, 4.6790804314609205e-23, -1.0317125207013292e-19, 1.2741066484319192e-16, -9.684460759517656e-14, 4.6937937442284284e-11, -1.4553498837275352e-08, 2.8216624998078298e-06, -0.000323032620672037, 0.019538631135788468, -0.3774384056850066, 12.324891083404246};</pre>	
<pre>const int cal_max = 1023;</pre>	
//INTERUPT SETUP #define TIMER_INTERVAL 1000000 //	/ Every 1,000,000 us the timer will update the OLED readout
<pre>//OLED SETUP #define OLED_RESET 10 Adafruit_SSD1306 display(OLED_RESET);</pre>	
//initialize variables	

Results & Conclusion

A.Distance dependence

There is an exponential dependence as we change the distance between the detectors, as expected.

B. Angle dependence (indoors)

We expect data points to align with cosine squared curve, as indicated in [6]. We can see that the experimental data correspond with theoretical prediction.

B. Angle dependence (outdoors)

Similar to the previous result, but slightly worse fit parameters

C.Angle dependence – indoors vs. outdoors

There are more particles observed indoors – not as expected. Possible reason: the building itself generates additional particle cascades.

D. Pb filter thickness dependence

We expect to get rid of low energy components (about 30% of particles) and to obtain an exponential dependence, but the result is ambiguous

Conclusion

- Cosmic rays detectors are necessary for the MPD to eliminate the background from cosmic radiation
- The result of the Pb filter measurement is ambiguous and remains an open question for future measurements
- Most of the results matched the predictions
- The results of our work can be used as a set of initial conditions for future theoretical calculations

THANK YOU FOR YOUR ATTENTION

Reference

[1] Golovatyuk V., Kekelidze V., Kolesnikov V., Rogachevsky O., Sorin A. The Multi-Purpose Detector (MPD) of the collider experiment, Eur. Phys. J. A (2016) 52: 212

[2] Bielewicz M. and all *MCORD – MPD Cosmic Ray Detector for NICA*, Proc. SPIE, 2018

[3] Strugalski Z. *Promieniowanie kosmiczne* Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 1993

[4] Moczulska M. *Promieniowanie kosmiczne* Uczelniana Oferta Dydaktyczna PW, 2009

[5] <u>http://cosmicwatch.lns.mit.edu/about</u>

[6] M. Tanabashi *et al.* (Particle Data Group), Phys. Rev. D **98**, 030001 (2018), p.6