

Politechnika Wrocławska

Numerical Modeling of Superconductors and Their Application for Magnetic Shielding

Supervisor: dr inż. Łukasz Tomków Veksler and Baldin Laboratory of High Energy Physics

Błażej Skiba Wrocław University of Science and Technology, Poland Faculty of Mechanical and Power Engineering, Refrigeration and Cryogenics

Table of contents

Introduction

•Numerical and experimental investigating of SC shields

•Results for Electron Cooling System for NICA collider

Figure 1 Nica complex

Electron Cooling System

 Decreases the velocity Electron collector Electron gun range of ions Requires high homogeneity High voltage platform of magnetic field Electron beam Magnetic field •Usage of HTS screens lon beam for lowering the costs Interaction region

Figure 2 Scheme of Electron Cooler

Superconducting properties

- Perfect conductors
- •Meissner effect
- Described by critical parameters
- •Classification:
 - LTS and HTStype I and type II

Figure 4 Critical magnetic field and Meissner effect in first and second type superconductors

Figure 3 Superconducting critical parameters

Magnetic shielding

Two types: open and closed

Homogeneity of magnetic field Trapping/Separating magnetic field

Applications:

- Cryocoolers
- Magnetic levitation systems
- Medicine
- Particle accelerators
- Superconducting synchronous machines

Figure 5 Examples of magnetic shielding application: ECS (top left), MRI (bottom left) and G-M Cryocooler (right)

Shielding effect

Figure 6 Results of numerical modeling – comparison of shielding effect

Shielding effect

Figure 7 Results of numerical modeling – comparison of shielding effect

Experimental setup

Figure 8 Experimental setup - connections scheme

Operating range of the magnet

Figure 9 Current – voltage characteristic of the superconducting magnet

Experimental results

Results and summary

•Maximum safe current for test stand magnet is ~20 A

•Open-type shields allow to increase field homogeneity

• Experiments will be continued with higher currents

Thank you for your attention!