

Analysis of high-LET radiation-induced HPRT mutations in mammalian cells

Laboratory of Radiation Biology Group of Radiation Cytogenetics Joint Institute for Nuclear Research

Patrycja Leszczenko Faculty of Chemistry Jagiellonian University in Kraków Project supervisors: Daria V. Petrova Yulia V. Bogdanova

Plan of the presentation

- 1. Aim of the project
- 2. High-LET radiation
- 3. HPRT gene
- 4. Work description
- 5. Equipment
- 6. Results
- 7. Conclusions

Aim of the project

- Structural analysis of HPRT mutations caused by irradiation
- Analysis of partial and/or total deletions of exons using the PCR method
- Identification and distinction of the changes in the genetic material of the cells after γ and ^{18}O irradiation

FINAL AIM:

Clarification of molecular mechanisms of mutagenic effects induced by different types of ionizing radiation in cells in radiation genetics investigations

High-LET radiation

LET = Average energy deposited per unit length of track (keV/μm)

Track average

Energy average

 $LET_{\gamma} = 0.3 \text{ keV/}\mu\text{m}$ $LET_{180} = 115 \text{ keV/}\mu\text{m}$

high-LET (high linear energy transfer) – densely ionising radiation, eg. heavy ions, α particles, have a greater biological effectiveness than low-LET.

Low LET tracks

~25 nm

Tracks in chromatin fibre

1. Eric J. Hall, Amato J. Giaccia, Radiobiology for the radiologist, 7th edition, Philadelphia 2012, ISBN 978-1-60831-193-4

2. Dudley T. Goodhead, Mechanisms for the Biological Effectiveness of High-LET Radiations, J. Radiat. Res., 40: SUPPL, 1-13 (1999)

HPRT gene

MATRSPSVVISDDEPGYDLDLFCIPNHYVEDLEKVFIPHGVIMDRTERLARDVMKEMGGH HIVALCVLKGGYKFFADLLDYIKALNRNSDRSIPMTVDFIRLKSYCNDQSTGDIKVIGGD DLSTLTGKNVLIVEDIIDTGKTMQTLLSLVKRYNLKMVKVASLLVKRTSRSVGYRPDFVG FEIPDKFVVGYALDYNEYFRDLNHICVISETGKAKYKA

- 1. Rossiter, B.J.F.; Fuscoe, J.C.; Muzny, D.M.; Fox, M.; Caskey, C.T. The Chinese hamster HPRT gene: Restriction map, sequence analysis, and multiplex PCR deletion screen, *Genomics*. vol. 9 (2), 1991, 247–256
- 2. Stout, J.T.; Caskey, C.T. HPRT: Gene Structure, Expression, and Mutation, Annual Review of Genetics. vol. 19 (1), 1985, 127–148.

Work description

Equipment

Real-Time PCR Detection System (Bio-Rad)

Sub-Cell GT Cell (Bio-Rad)

Gel Doc EZ System (Bio-Rad)

Results

_											
	Ex9	Ex7,8	Ex6	Ex5	Ex4	Ex3	Ex2	Ex1	No. of mutant	Dose	Irradiation
									5A	0,5 Gy	γ
									8A	0,5 Gy	γ
									7A	0,5 Gy	γ
									10A	0,5 Gy	γ
									1A	2 Gy	γ
									6A	2 Gy	γ
									1Б	2 Gy	γ
									7Б	2 Gy	γ
									3Б	0,5 Gy	¹⁸ O
									2A	0,5 Gy	¹⁸ O
									16A	0,5 Gy	¹⁸ O
									3A	0,5 Gy	¹⁸ O
									3A	2 Gy	¹⁸ O
									3B	2 Gy	¹⁸ O
									5Б	2 Gy	¹⁸ O
									10Б	2 Gy	¹⁸ O

exon amplified exon lost

Table 1. Results of real-time PCR performed on the mutant DNA.

Results – gel electrophoresis

Fig. 1. Mutant 10A – all exons present.

Fig. 2. Mutant 7A – partial deletion.

Fig. 3. Mutant 3A – total deletion.

Results

γ

¹⁸O

Results

Dose dependence for total and partial deletions - y irradiation mutants [%] 0,5 Gy 2 Gy partial deletions total deletions

Dose dependence for total and partial deletions - ¹⁸O irradiation

Conclusions

- PCR and gel electrophoresis are excellent methods in monitoring damages of genetic material.
- Both types of irradiation and two studied doses cause deletions in the DNA of V79 cell line.
- ¹⁸O appears to cause two times more exon deletions in the DNA.
 - Perhaps it is linked with higher LET value (or ROS).
- There is no apparent dose-type of deletion relationship for the $\boldsymbol{\gamma}$ irradiated cells.
- 0,5 Gy dose of ¹⁸O seems to cause more damage than 2 Gy.
 - This may be due to the fact that 2 Gy of accelereted oxygen ions kill cells right after the irradiation.

Thank you for your attention

