

Transport phenomena and magnetic/crystalline Structure of Manganites **Project Coordinator** Prof. Dr. Mihail Liviu Craus

eam or k

- Mohamed E. A. Safy, Minia University, Egypt.
- Abanoub R.N.Hanna, Fayoum University, Egypt.
- Menna Ghannam, Ain Shams University, Egypt.
- Eduardo L. Mendoza Caballero, Centro de Estudios Avanzados de Cuba, Cuba.

Perovskite Parent Structure: CaTiO₃

(A) cations (such as La, Sr, Ca, Pb, etc.) rare earth and alkaline earth.
 (B) cations (such as Ti, Cr, Ni, Fe, Co, Zr, Mn, etc.) transition metals.

ABO₃

Structural analysis of manganites using XRD.

Investigate the magnetic and transport phenomena of manganites using VSM and four point probe.

Exchange interaction

Superexchange:

- Antiferromagnetic interaction
- Localized non-conducting electrones
- Change spin orientation due to Hund rules

Double Exchange:

- Ferromagnetic interaction
- Delocalization of valence electrons
- Doped compounds with different number of valence electrons
- Spin orientation due to polarization
- Transfer integral

$La_{0.54}Nd_{0.11}Sr_{0.35}Mn_{1-x}Co_xO_3$ Preparation

X-Ray diffraction

MakeAGIF.com

XRD of $La_{0.54}Nd_{0.11}Sr_{0.35}Mn_{1-x}Co_{x}O_{3}$

Software Programs

- ✓ Cristalographica
- ✓ Crystallography open database →
- ✓ Full Prof suite code
- ✓ Celerf3
- ✓ Powder cell
- ✓ MolCal

Structure Refinement

Molecular Weight Calculation

Unit cell for orthorhombic crystal system (Pnma)

Manganese

Lanthanum

Oxygen

Cations and anions positions in Pnma unit cell

Cation/ Wyckoff Name SOF X V Ζ Anion position 0.9950 La³⁺ 4C 0.0917 0.2500 La Mn³⁺ Mn 4b 0 0 0.5000 01 O^{2-} 4C 0.4913 0.2500 0.0838 O^{2-} O2 8d 0.2751 0.0330 0.7245

Figure 1 The unit cell of an orthorhombic crystal (system Pn m a)

Unit cell	parametei	rs for La _o				
×	SG	a (Å)	b (Å)	c (Å)	V (Å ³)	
0.00	Pnma	5.4944	7.709	5.4614	231.327	
0.05	Pnma	5.4993	7.7099	5.4611	231.546	
0.10	Pnma	5.4994	7.7088	5.4649	231.679	a=β=
0.15	Pnma	5.497	7.7071	5.4624	231.420	Υ - 70-
0.25	Pnma	5.4907	7.7222	5.4683	231.858	
Microstruc	tural para	meters fo	r La _{0.54} No	d _{0.11} Sr _{0.3}	₅ Mn _{1-x} Co _x C	
	X	SG	3	D(nm)		
	0.00	Pnma	0.000240	68.81	*CIV	5_(x=0.25):
	0.05	Pnma	0.000883	84.28	Fore	
	0.10	Pnma	0.000639	104.75		
	0.15	Pnma	0.000617	106.24		
	0.25	Pnma	0.002214	65.15		

Magnetic measurements using VSM

(o - k m
(o) specific magnetization
(U) voltage drop across the coils
(m) sample weight
(k) constant of the instrument

Phase diagram of Manganites

JOINT INSTITUTE

FOR NUCLEAR RESEARCH

Uehara, Mori, Chen and Cheong, Nature 399, 560 (1999).

Specific magnetization (σ) vs temperature (T) for the sam-ples of the system La_{0.54}Nd_{0.11}Sr_{0.35}Mn₁₋ _xCo_xO₃

The variation of σ vs T presents two regions: for high temperature (T>200 K) we have ferromagnetic behavior, while for low temperature can be observed a transition from the ferromagnetic to the spin glass state.

Magnetic parameters for La_{0.54}Nd_{0.11}Sr_{0.35}Mn_{1-x}Co_xO₃

(Curie temperature – T_c ; specific magnetization - σ)

Со			
concentration	Т _с (К)	<mark>σ (</mark> emu/g)	
x=0.00	304.5	70.5	
x=0.05	310.0	60.6	
x=0.10	266.5	42.4	
x=0.15	264.0	12.7	
x=0.20	255.0	19.1	

We observed that the Curie temperature have a small decrease with the Co concentration: the distances between the magnetic moments remain practically unchanged. In the same time, a very quick change appears in the specific magnetization, that means a decrease of the magnetic phase concentration, implicitly of the metallic phase concentration.

Transport measurements by four probe method

(1)Cryostat (2)Vacuum pump (3)Evacuated tube (4)Copper rod (5)Sample (6)Current source (7)Voltmeter

Conductivity models

Depends on density of localized states near E_{F} . $T > T_{C}$ Activated behaviour where E_0 – activation energy and k – Boltzmann constant **Polaronic hopping**

VRH- variable range hoping

Coulomb energy between charge carriers excess Jahn-Teller energy gap . $\rho(T) = \rho_0 \exp\left\{\left[\frac{T_0}{T}\right]^{1/4}\right\}$

Localized states with sufficient energy.

Hops beyond nearest neighbor are energetically favourable.

There is no agreement concerning the conductivity models at high temperature T<T_C

Ferromagnetic region

Dominant lowering of density of localized states

The AT² term represents the electron-electron scattering processes, while the third is due to the two magnon (collective excitation spin structure) processes.

Conductivity models

Figure 4. Variation of resistance vs temperature for $La_{0.54}Nd_{0.11}Sr_{0.35}Mn_{1-x}Co_xO_3$ manganites

Figure 5. Variation of resistance vs temperature and Co concentration for La_{0.54}Nd_{0.11}Sr_{0.35}Mn_{1-x}Co_xO₃ manganites at low temperatures (*two magnon processes*)

Magnetic and transport parameters of some $La_{0.54}Nd_{0.11}Sr_{0.35}Mn_{1-x}Co_xO_3$ manganites

X	T _c [K]	T _{IM,extrinsic} (K)	T _{MI, intrinsic} [K]	E _o [eV]
0.00	304.5	216		0.051
0.05	310.0	239	293	0.026
0.10	266.5			
0.15	264.0	210	303	0.029
0.20	255.0	241		0.033

✓ La_{0.54}Nd_{0.11}Sr_{0.35}Mn_{1-x}Co_xO₃ manganites have been synthesized by ceramic method and the Pnma structure was confirmed by XRD for all x values, except of the one corresponding to x=0.25

- ✓ Orthorhombic structure with space group (Pnma) was observed for all investigated samples
- ✓ The variation of the unit cell volume is due to the: 1)the increase of the Mn³⁺ concentration with the increase of oxygen concentration and 2)the increase of the Co concentration, which have a smaller radii as the manganse

- ✓ Manganite samples behave as metals for temperature lower than T_{MI} and semiconductor for temperature higher than T_{MI}
- ✓ At low temperature all the samples support a transition from the ferromagnetic to spin-glass state
- ✓ For the studied manganites was observed a large difference between the Curie and transition temperature, attributed to the presence of an important amount of defaults, present in the boundaries layers.
- ✓ The present of a boundary layer with a large amount of defaults and characterized by a lower Curie temperature and a high resistivity as the "crystalline core" avoids the observation of the transition temperature of the "crystalline core". The observed behavior of resistance with temperature at very low temperatures can be attributed to the intergranular spin polarized tunneling mechanism.

Acknowledgment

Joint Institute of Nuclear Research (JINR)

Academy of Scientific Research and Technology

Centro de Estudios Avanzados de Cuba (CEAC)

Prof. Dr. Mihail Craus Dr. Vitalja Turchenko Prof. Dr. Mohamed Elshaer Prof. Dr. Carlos M. Cruz Inclan Dr. Wael Badway Dr. Mohamed Aesh Ms. Julia Rybachuk Ms. Elizabeth Budennaya

Thank you for your attention !!