STRIP DETECTOR CALIBRATION USING DECAY CHAINS OF PRE-RECORDED DATA IN FULL FUSION REACTIONS OF <sup>40</sup>Ar + <sup>148</sup>Sm AND <sup>40</sup>Ar + <sup>166</sup> Er AND IN MULTINUCLEON TRANSFER REACTION OF <sup>48</sup>Ca + <sup>242</sup>Pu

Supervisor: Vyacheslav Vedeneyev Lubos Krupa

**Group Members:** 

Sumeera Gopal Dobgima Innocent Babila Sifiso Mngonyama





science & technology Department:

Department: Science and Technology REPUBLIC OF SOUTH AFRICA







LABS Laboratory for Accelerator Based Sciences

# AIM OF THE PROJECT

- Acquaintance with MASHA
  - ECR source
  - Rotating target with hot catcher
  - Mass Separator
  - Detector
- Analysis of Data
  - Plotting Graphs of different isotopes and their alpha decay energies
  - Calibration of Mass-energy spectrum



# **INTRODUCTION**

- Super heavy elements
  - Stability, island of stability
  - Half life, properties, cross section
- **Fusion Reaction** ullet
  - Collision and compound nuclei
  - Alpha decays
- MASHA
  - Alpha decay and half life



Department: Science and Technology REPUBLIC OF SOUTH AFRICA







# Introduction (cont.)



[Source:Kelley, L. (2019, March 12). What Is the Island of Stability? Retrieved from https://owlcation.com/stem/What-is-the-Island-of-Stability]



& technology Department: Science and Technology REPUBLIC OF SOUTH AFRICA

science







emba

# INTRODUCTION(cont.)

• Fusion Reactions



[Source:(n.d.). Retrieved from https://www2.lbl.gov/Science-Articles/Archive/dizzy-nuclei.html]



#### FLOWCHART FOR EXPERIMENTAL SETUP





Department: Science and Technology REPUBLIC OF SOUTH AFRICA

& technology

science



Joint Institute for Nuclear Research science BRINGING NATIONS TOGETHER





# Experimental set-up



#### MASHA is connected to the U400M Cyclotron at the beam line

[Source: © 2003 By Default! A Free sample background from Slide 1 JINR SCIENTIFIC COUNCIL 104 th Session, 25 September 2008, Dubna. - ppt download. (n.d.). Retrieved from https://slideplayer.com/slide/8410610/]



science & technology

Department: Science and Technology REPUBLIC OF SOUTH AFRICA















Department: Science and Technology REPUBLIC OF SOUTH AFRICA









#### **Target Wheel:**

- Diameter of disc :140mm
- Consists of 12 sectors,14mm width each and 30mm arc length.
- Grants heat distribution

[Source: Viacheslav, V. (n.d.). Upgrading of MASHA setup. Using the cryogenic gas stopping cell. Lecture presented at JINR Seminar in Russia, Dubna.]



& technology Department: Science and Technology REPUBLIC OF SOUTH AFRICA

science









#### Hot catcher:

- Refer as "Hot" because it is heated by electric current to temperature of 1800°C – 2000°C.
- Role: catches energetic products where they are stopped.
- Composed of flexible Graphite
- Delivery time of nuclides to the ECR (electron cyclotron resonance) ion source about 1.8 s.

[Source: Viacheslav, V. (n.d.). *Upgrading of MASHA setup. Using the cryogenic gas stopping cell*. Lecture presented at JINR Seminar in Russia, Dubna.]





science







#### **Electron Cyclotron Resonance (ECR) ion Source**

#### Principles:

- Ionizes products to +1 state
- Energy of ions 38 keV up to 50 keV
- UHF (Ultra High Frequency) wave (2.45 GHz)



[Source: Viacheslav, V. (n.d.). Upgrading of MASHA setup. Using the cryogenic gas stopping cell. Lecture presented at JINR Seminar in

#### Russia, Dubna.]



Department: Science and Technology REPUBLIC OF SOUTH AFRICA

& technology

science







LABS

#### MASHA in real life





Department: Science and Technology REPUBLIC OF SOUTH AFRICA









iThemba LABS Laboratory for Accelerator Based Sciences

## **Results and Discussions**







**3-D** plot of the Alpha particles energies versus strip number and counts Color Scale Title 975,0 - 873,5 - 772,0 800 - 670,5 - 569,0 600 · - 467,5 Counts - 366.0 400 264,5 - 163,0 200 61,50 -40,00 0 6920 20 6520 20 Silio Number 53. 202 ~8  $\mathcal{O}_{\geq}$ ~8



& technology Department: Science and Technology REPUBLIC OF SOUTH AFRICA

science







2-D plot of the Alpha particles energies versus strip number Color Scale Title



























Department: Science and Technology REPUBLIC OF SOUTH AFRICA

& technology







2-D plot of the Alpha particles energies versus strip number Color Scale Title 9981 - 0,000  $^{212}$ Rn(23.9mins) E\_=6250keV[99.950] 8999 184.0 <sup>218</sup>Rn (35ms) <sup>215</sup>**PO**(1.781ms)  $E_{\alpha} = 7110 \text{keV}$  [99.87] 8017 - $E_{\alpha}$ =7360keV Energy (keV) 368,0 7035 <sup>219</sup>Rn(3.95s)  $E_{\alpha} = 6790 \text{keV}$ 552,0 Isotopes of 6054 Half-life Radon  $^{213}$ Rn 25ms  $^{214}$ Rn 0,27µs 736,0 5072  $^{215}$ Rn 2,30µs  $^{216}$ Rn 45µs  $^{217}$ Rn 0.54ms 920,0 180 20 40 60 80 100 120 40 160 **Strip Number** science & technology Flerovium Joint Institute for Nuclear Research Department: ..... Science and Technology Research Laboratory for Accelerato REPUBLIC OF SOUTH AFRICA Foundation **Rased Sciences** Dubna

#### Conclusion

- Calibration of the strip detector using pre-recorded data of decay chains of the following fusion reaction was done:
  - ${}^{40}\text{Ar} + {}^{148}\text{Sm} \longrightarrow \{{}^{188-xn}\text{Hg} + xn\}$
  - ${}^{40}\operatorname{Ar} + {}^{166}\operatorname{Er} \longrightarrow \{{}^{206-xn}\operatorname{Rn} + xn\}$
  - Multinucleon transfer reaction of  ${}^{48}Ca + {}^{242}Pu \longrightarrow \{Rn\}$

• MASHA was visited . Description and functionality of the different parts of MASHA was done.



#### References

1.] Zagrebaev, V., & Greiner, W. (2008). New way for the production of heavy neutron -rich nuclei. Journal of Physics G: Nuclear and Particle Physics, 35, 1-14.

2.] Schadel, M. (2016). *Chemistry of superheavy elements*. Darmstadt Germany: Springer-Verlag Berlin An.

3.] Eichler, R., & Al., E. A. (2007). Chemical Characterization of Element 112. ChemInform, 38(32). doi:10.1002/chin.200732020.

4.] Krupa, L. (2010, July 12). Synthesis of Superheavy elements using the mass spectrometer MASHA. Lecture presented at JINR Seminar Presentation in Russia, Dubna.



Department Science and Technology EPUBLIC OF SOUTH AFRICA

k technology









