Latent tracks of swift heavy ions in Si₃N₄

MTSHONISI Nqophisa

University of Pretoria, South Africa

Masters in Physics

LEHONG Mashilo Phillimon

North West University, Mafikeng, South Africa

Honours in Applied Radiation Science and Technology

FLEROV LABORATORY of NUCLEAR REACTIONS

Dr V A Skuratov (Supervisor)

Joint Institute for Nuclear Research, Dubna Russia

Si₃N₄ as candidate material for inert matrix fuel hosts

Inert matrices - ceramics absorption cross sections actinides via nuclear reacti Ceramics and oxides cons - MgAl₂O₄, MgO, Al₂O₃, Zr(

- Small absorption cross s
- Good thermal and mecha

Radiation defects induced by swift heavy ions simulating fission fragments impact still remain less studied in comparison with neutron and conventional (low energy) ion irradiation

and with low neutron for transmutation of

hert matrix fuel hosts N₄

$$(-dE/dx)_{t} = (-dE/dx)_{n} + ($$

Main peculiarity of swift heavy ion interaction with solids is a high level of ionizing energy losses which may result in formation of specific radiation damage - latent tracks

Aim of this work is to evaluate latent track parameters in Si₃N₄ irradiated with swift Bi ions

 $(-dE/dx)_{ion}$

~ 99%

Latent tracks in crystalline Si3N4

Amorphous latent track of 710 MeV Bi ion in polycrystalline Si_3N_4 .

Track diameter = 3 - 4 nm

S.J. Zinkle, V.A. Skuratov and D.T. Hoelzer. Nucl. Instr. Meth. B 191 (2002),758

Bi, 700 MeV

×

٥

Size (nm)

Model Equation Plot y0 xc w A Reduced Chi-Sqr R-Square (COD) Adj. R-Square

Gauss y=y0 + (A/(w*sqrt(pi/2)))*exp(-A5.12669 ± 0.57155 3.2717 ± 0.03301 2.04247 ± 0.1152 42.36176 ± 3.26458 0.2589 0.9974 0.99349

