Recision investigation of modern crystaline naterials we neutron diffraction met 20

Outline

- Objectives of the project
- >Introduction
- ≻Equipment
- Results and Analysis
- ➤ Conclusion
- ➢ References
- Acknowledgements

Objectives

- Is to determine the position and motion of an atom in crystal sample structure using neutron diffraction technique.
- To determine the relationship for calculating temperature of sample using diffraction pattern.

Introduction

- Neutrons have high penetration for most elements making neutron scattering a bulk prob.
- High scattering bounce away from nucleus based on brag's law of diffraction.
- Neutron scattering is a technique of choice for studying condense matter
- When the beam of monochromatic is directed to sample it diffract at an angle
- The respond of each grain orientation (hkl) provide distinct peaks
- Neutron have low flux and high cross section area so the information about crystal structure is very specific and useful.

D= interplaner spacing n= order of interference Θ = Bragg angle λ = wavelength

Neutron diffraction v.s X-ray diffraction

NEUTRON DIFFRACTION	X-RAY DIFRACTION
Neutron particles have magnetic moment, it can be use to study magnetic structure	X-ray does have magnetic moment so you can not use to study magnetic structure
Neutron diffractometer is a complex machine so it more expensive to access it	X-ray have good availability
Neutrons scattered from nuclei and every isotopes have different scattering length, it depends on scattering length.	X- ray scattered from electrons ,so it contains scattering from electron cloud

Time of flight technique

Science and Technology REPUBLIC OF SOUTH AFRICA

High Resolution Fourier Deffractometer(HRFD)

- 1 Moderator
- 2 Fourier Chopper
- 3 Guide Tube
- 4 Main Detector
- 5 Sample Position
- 6 90°-Detector
- 7 PSD Detector
- 8 VME Control and Operative Visualization/Analysis
- 9 VME Station (OS/9) Data Acquisition
- 10 EtherNet Data Transfer
- 11 Background chopper

& technology

High Resolution Fourier Diffractometer

HRFD

- It was commissioned at the IBR-2 pulse reactor
- It users fast Fourier chopper for modulating primary beam neutron intensity
- It as uses correlation method for data acquisition and has high resolution of about (0.001)
- Flight path between chopper and sample is approximately (20 m).
- The resolution and neutron flux is the most vital parameters in diffractometer experiment.

LaB6, T=293 K, HRFD-Dubna

JOINT INSTITUTE UUU JINR FOR NUCLEAR RESEARCH

Furnace

Temperature calibration

Collect sequence of diffraction patterns for Silver .

- Refine unit cell dimensions as a function of temperature
- Calculate ε
- Calculate real T using polynomial coefficients

 $a - a_{20}$ $\mathcal{E} =$ a_{20}

calibration

Silver calculated spectrum

Ag, T=453 K, HRFD-Dubna

Results IN silver sample

TEMPERATUR SENSOR(K)	REIN	Cell Parameters	Relative elongation unit cell	Calculated temperature(K)
	293	4,0871±0.0003	0	293±5
	373	4,0934±0.0002	1551,211	373±5
	453	4,0999±0.0002	3141,569	452±4
	533	4,1065±0.0003	4756,394	530±5
	613	4,1134±0.0003	6449,513	610±5
	693	4,120±0.0003	8201,354	690±5
science			`	

& technology Department: Science and Technology **REPUBLIC OF SOUTH AFRICA**

emba

Results

Conclusion

The relation between temperature of sample and a temperature read by a sensor is defined by T= 2.9 + 0.9918t which is leaner relation. In using the neutron diffraction technique the position of an atom was determined and its position changes with temperature .

References

- 1. <u>https://www.mlzgarching.de/englisch/neutron-</u> <u>research/experimental-methods/inelastic-</u> <u>scattering.html</u>
- 2. <u>http://flnph.jinr.ru/images/content/ibr2/FDHR.jpg</u>
- 3. <u>https://upload.wikimedia.org/wikipedia/commons/5/</u> 58/Bragg%27s_Law.PNG
- 4. Texture Investigations by Neutron Time-of-Flight Diffraction by *K.* FELDMANN
- 5. https://lansce.lanl.gov/facilities/wnr/_assets/images/ time_of_flight2.png

Acknowledgements

My Supervisors: Sergey Sumnikov and Ivan Bobrikov

> Miss J.Raybeck Miss Elizabeth Prof R. Newman Populace in JINR institute

