

Transport phenomena and magnetic crystalline Structure of Manganites

Project Coordinator Prof. Dr. Mihail Liviu CRAUS

Team Work

- Thembeka Ntombela, University of Zululand, South Africa
- Zolani Magobiyane, University of North West, South Africa

Perovskite Structure

 $Mn^{3+/4+}$ O^{2-} CaTiO₃

✓ A cations (*Ca*)
✓ B cations (*Ti*)

R rare-earth cation

A alkali or alkaline earth cation

 O^{2-}

- ✓ Structural analysis of manganites using XRD
- Investigate the magnetic and transport phenomena of manganites using VSM and four point probe

$La_{0.7}Ca_{0.3-x}Sr_{x}MnO3$ Preparation

Calculation of the precursors necessary to obtain the La_{0.7}Ca_{0.3-x}Sr_xMnO₃ (LCSMO) manganites

x	m _{La2O3}	m _{CaCO3}	m _{SrCO3}	m _{Mn2O3}	Σ	m _{LCSMO}
0.03	5.081	1.204	0.197	3.517	224.42	9.999
0.06	5.049	1.064	0.392	3.495	225.849	10
0.09	5.017	0.925	0.585	3.473	227.275	10
0.12	4.986	0.788	0.775	3.452	228.701	10.001
0.24	4.865	0.256	1.512	3.368	234.407	10.001

X-Ray diffraction

JOINT INSTITUTE

JINR

XRD of $La_{0.7}Ca_{0.3-x}Sr_{x}MnO3$

The difractograms of the sintered samples. The red difractogram belongs to the sample corresponding to x=0.03, while the brown difractogram correspond to x=0.24

Software Programs

Full Prof suite code \checkmark Cristalographica \checkmark **Structure Refinement** CelRef3 **Powder cell** \checkmark MolCal **Molecular weight Calculation** \checkmark

The variation of the lattice parameters (a, b, c), average size of mosaic blocks (D) and of microstrains (ε) with Sr concentration (x) in La_{0.7}Ca_{0.3-x}Sr_xMnO3

x	a(Å)	b(Å)	c(Å)	v(A3)	D(Å)	3	GS (Space group)
0.03	5.4745	5.4844	7.7394	232.3704	447	0.0014	Pbnm
0.06	5.4722	5.4890	7.7397	232.4766	430	0.0015	Pbnm
0.09	5.4774	5.4974	7.7452	233.21903	516	0.0019	Pbnm
0.12	5.4748	5.4926	7.7482	232.9952	491	0.0023	Pbnm
0.24	5.5018	5.5018	13.3495	349.9497	311	0.0010	R3C

The observed (black), calculated (red) and the difference between the observed and calculated difractogram for x=0.03 (PowderCell)

JOINT INSTITUTE

RESEARCH

The observed (black), calculated (red) and the difference between the observed and calculated difractogram for x=0.09 (PowderCell)

The observed (black), calculated (red) and the difference between the observed and calculated difractogram for x=0.12 (PowderCell)

La0.7Ca0.18Sr0.12MnO3

The observed (red), calculated (black) and the difference between the observed and calculated difractogram (blue) for x=0.12 (FullProf)

observed and calculated difractogram for x=0.24 (PowderCell)

PowderCell 2.2

Unit cell for orthorhombic crystal system Pnma

Unit cell for orthorhombic crystal system Pbnm

Magnetic measurements using (VSM)

 $\boldsymbol{\sigma} = \boldsymbol{k} \frac{\boldsymbol{U}}{\boldsymbol{m}}$

($\boldsymbol{\sigma}$) specific magnetization

(U) voltage drop across the coils(m) sample weight

(k) constant of the instrument

Magnetization vs temperature

The variation of the magnetization with temperature (T) and Sr concentration (x).

Transport measurements by four sonde method

(1)Crygenerator (2)Vacuum pump (3)Evacuated tube (4)Cu rod (5)Sample (6)Current source (7)Voltmeter

The variation of resistivity with temperature and the magnetic field intensity for the sample corresponding to x=0.24

Magnetic and electrical parameters

Χ	T _c [K]	T _{IM,extrinsic} (K)	E _a [eV]
0.03	272	282	0.09738
0.06	287	295	0.07865
0.09	300	313	0.07241
0.12	308	321	0.06617
0.24	353	356	0.04282

Conductivity models

Thermal Activation model (TA)
 R=R₀exp(-E_a/kT)
 Single magnon process (SM)
 R=R₀ + AT²

Resistance measurements at (H=0)

Transport model at low T and (H=0)

Transport model at higher T and (H=0)

JOINT INSTITUTE

900

C) C)

800

700

600

Resistance measurements at (H=5000 Oe)

Transport model at low T (H=5000 Oe)

Transport model at higher T (H=5000 Oe)

JOINT INSTITUTE

JINR

- ✓ La_{0.7}Ca_{0.3-x}Sr_xMnO3 have synthesized by ceramic method and the structure was confirmed by XRD for all x values
- ✓ Orthorhombic structure (SG Pbnm) was observed for x=0.03 to x=0.12
 ✓ Rhombohedral structure (SG R-3C) for x=0.24
 ✓ Unit cell volume, corresponding to Pbnm phase, have a maximum for x=0.09
- ✓ Average size of the crystalline blocks remains practically constant until x=0.12, a sudden decrease being observed at x=0.24

- \checkmark Manganite sample behave as metals for temperature lower than T_{MI} and semiconductor for temperature higher than T_{MI}
- ✓ The Curie and transition temperatures increase with the Sr concentration in the samples
- ✓ Activation energy of thermal activation process decreases with Sr concentration

Joint Institute of Nuclear Research (JINR)

Academy of Scientific Research and Technology

Prof. Dr. Mihail-Liviu Craus Dr. Vitalja Turchenko Prof. Dr. M.L. Lekala Prof. Dr. Richard Newman Ms. Julia Rybachuk Ms. Elizabeth Budennaya

University of Zululand KwaDlangezwa Campus

North-West University Mafikeng Campus

Thanks

