

International Student Practice - Radiation Protection and the Safety of Radiation Sources -

Student:

Jovana Knežević Faculty of Sciences University of Novi Sad, Serbia **Project Supervisor:**

dr Said M. Shakour Dzhelepov Laboratory of Nuclear Problems JINR, Dubna, Russia

Dubna, 08-28 September 2019

Radiation Protection and Dosimetry

- Types of radiation
- Radiation spectrum
 - Activity
- Radiation dose terminology and units
- Occupational dose limits for radiation workers
 - Deterministic and stochastic effects
 - Types of dosimeters
- Radiation sources used in laboratory and their spectrum

Scintillation detector – BGO and NaI

Experimental setup

BGO (circular shape),

Co-60 + Cs-137

Energy calibration for BGO

NaI, Co-60+Cs-137 U = 800 V5 mV 26-Cs137+Co60-Nal_ch4_800V_5mV_T24-42_0.7Gss_599ns_20190912_0ch 11800 Entries 140 Mean 7.174 0.953 RMS **Gaussian fit** 120 of Cs-137 100 peak 80 13-Co60+Cs137_Nal_ch4_800V_5mV_T24-42_0.7Gss_599ns_20190912_0ch 60 NAMES AND ADDRESS OF A DESCRIPTION OF A 12777 Entries 9.175 Mean 40 160 RMS 4.914 661 keV 140 20 120 0 6.5 5 5.5 6 7 7.5 8.5 9 8 100 **1.17 MeV** 80 1.33 MeV 60 2.5 MeV 40 20 04 30 35 5 15 20 25

40

10

Energy calibration for NaI

To obtain the attenuation coefficient for cooper

To obtain the kinetic energy absorbed in the sensor and particle speed

Pixel detectors

Source	Uranium glass	Thorium rod	Am-241
Energy	$E_{k\beta} = 100 keV$	$E_{k\beta} = 80 \ keV$	$E_{k\alpha} = 3.6 MeV$
	$E_{k0} = 511 keV$	$E_{k0} = 511 keV$	$E_{k0} = 3\ 735\ MeV$
$\left(\frac{v}{c}\right)_{relativistic}$	0.548 🔗	0.502	0.04387
$\left(\frac{v}{c}\right)_{classical}$	0.625	0.559	0.04390
δ [%]	14	11	0.072

To calculate the spatial angle of collimated beam

Am-241, Collimated beam, Distance from the detector: 0 mm

Am-241, Collimated beam, Distance from the detector: 10 mm

$$\alpha = 2 \cdot \operatorname{arctg} \frac{d_2 - d_1}{2x}$$

 $d_1 (0 \text{ mm}) = 3.52 \text{ mm}$ $d_2 (10 \text{ mm}) = 8.86 \text{ mm}$ $\alpha = 29.9^\circ$

$$\Omega = \frac{S}{r^2} = \frac{2\pi rh}{r^2} = \frac{2\pi h}{r}$$
$$h = r \cdot \left(1 - \cos\frac{\alpha}{2}\right)$$
$$\Omega = \frac{2\pi r \cdot \left(1 - \cos\frac{\alpha}{2}\right)}{r} = 2\pi r \cdot \left(1 - \cos\frac{\alpha}{2}\right)$$
$$\Omega = 0.46 \ sr$$

Approximate estimation of the mean linear range of alpha particles in the air

$$R = 2.55 \ cm$$

$$R[cm] \approx 0.31 \cdot (E_k[MeV])^{\frac{3}{2}}$$

$$E_k = \left(\frac{R}{0.31}\right)^{\frac{2}{3}}$$

$$E_k = 4.1 \ MeV$$

The result roughly confirms the formula for range of alpha particles in the air

Energy loss of alpha particles in the air

Mean linear range

 $0 = -1.08194 \cdot R^2 - 109.7069 \cdot R + 3668.8$

 $R\approx 25\,mm$

Back to the formula for approximate range . . .

 $R[cm] \approx 0.31 \cdot (E_k[MeV])^{\frac{3}{2}}$

 $E_k \approx 3.6 \, MeV$

$$R \approx 21 \ mm$$

And more . . .

Number of ion pairs =
$$\frac{\frac{dE}{dx}}{E_1} = \frac{113.08 \frac{\text{keV}}{\text{mm}}}{34 \text{ eV}}$$

= 33 250 iona/cm

The aims of the project...

 \checkmark to acquire a sound basis in radiation protection and the safety of radiation sources at the basic level

 \checkmark to provide the necessary practical skills and basic tools for work in the field of radiation protection and the safe use of radiation sources

✓ to study different types of radiation as well as radiation doses

✓ to study response of different types of detectors – scintillation detectors and pixel detectors

✓ to perform calibration of detectors

✓ to study attenuation of gamma radiation

 \checkmark to derive the ranges of alpha particles

"Science brings nations together"

THANK YOU ROR

OUR AMBNILION

