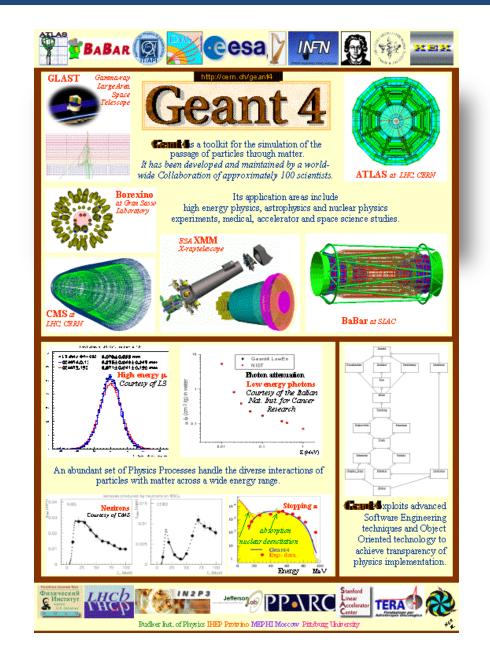


Computer simulation of radiation protection using the Geant4 toolkit

Under Supervision: prof. dr. Alexey Zhemchugov

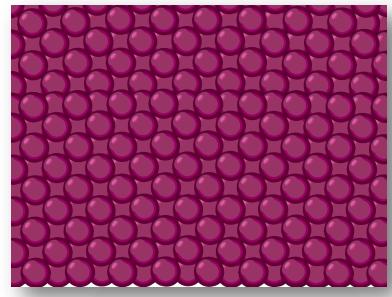
Head of Department of Collider Physics, PhD Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, Joliot-Curie, 6, 141980 Dubna, Moscow region, Russia

Presented by: Alaa H. M. Abdelrahman


Research Assistant at CompChem lab, Chemistry Department, Faculty of science, Minia University, Minia 61519, Egypt.

AGENDA

- GEANT4 Background.
- The application of GEANT4 software.
- Physical Simulation.
- AIMS & OBJECTIVES
- COMPUTATIONAL METHODOLOGY
- RESULTS & DISCUSSION



introduction

GEANT4 Background

- **GEANT4:- Geometry ANd Tracking.**
- Geant4 is a toolkit for the simulation of the passage of particles through matter using Monte Carlo methods.
- Monte-Carlo method is a numerical method to solve applied mathematical problems by simulation of random variables and statistical analysis of their characteristics.

introduction

GEANT4 Background

Overview

Geant4 is a toolkit for the simulation of the passage of particles through matter. Its areas of application include high energy, nuclear and accelerator physics, as well as studies in medical and space science. The three main reference papers for Geant4 are published in Nuclear Instruments and Methods in Physics Research A 506 (2003) 250-303 P, IEEE Transactions on Nuclear Science 53 No. 1 (2006) 270-278 P and Nuclear Instruments and Methods in Physics Research A 835 (2016) 186-225 P.

A sampling of applications, technology transfer and other uses of Geant4

User Support

Getting started, guides and information for users and developers

Validation of Geant4, results from experiments and publications

Who we are: collaborating institutions, members, organization and legal information

Download |User Forum@ Contact Us | Gallery

News

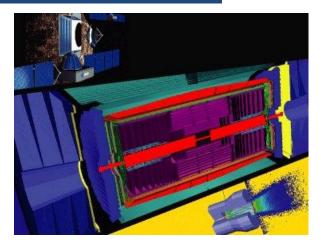
 28 Jun 2019 Release 10.6-BETA is available from the BETA Download area.

Collaborator Login

- 17 Apr 2019
 Patch-01 to release 10.5 is available from the Download area.
- 13 Mar 2019
 2019 planned developments

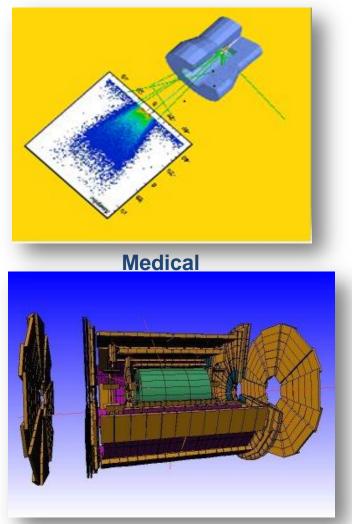
 12 Feb 2019
 Patch-03 to release 10.4 is available from the source archive P area.

printer-friendly version


Events

- 8th International Geant4 School P, Belgrade (Serbia), 17-22 November 2019.
- 4th Geant4 School:P, University of Wollongong, Australia, 2-5 December 2019.
- 25th Geant/ Collaboration Meeting, IDISA Laboratory Renner (Erance), 21-25 Centember 2020

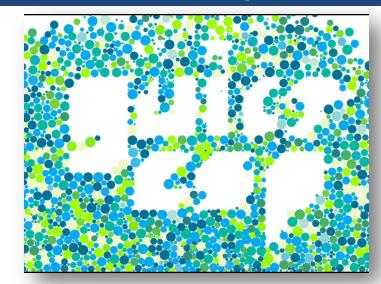
introduction


GEANT4 application

Transfer Technology

Space and radiation

High energy physics

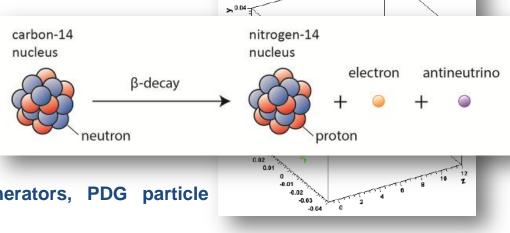


introduction

Physical Simulation

A physics simulation starts with a mathematical model whose variables define the state of the system at a given time.

We simulate physical processes and detector response in an experiment being planned or conducted.

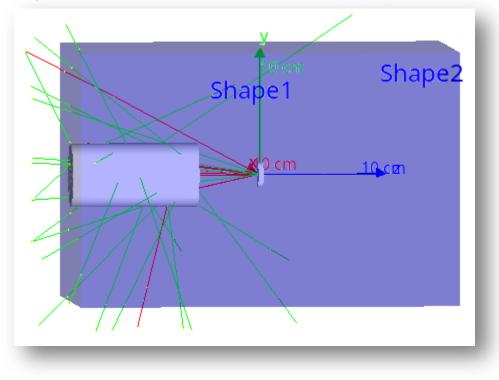

Basic requirements for a simulation system

Modeling the experimental set-up.

- Tracking particles through matter.
- Interaction of particles with matter.
- Modeling the detector response.
- Run and event control.

Accessory utilities (random number generators, PDG particle informationetc).

Visualization of the set-up, tracks and hits.

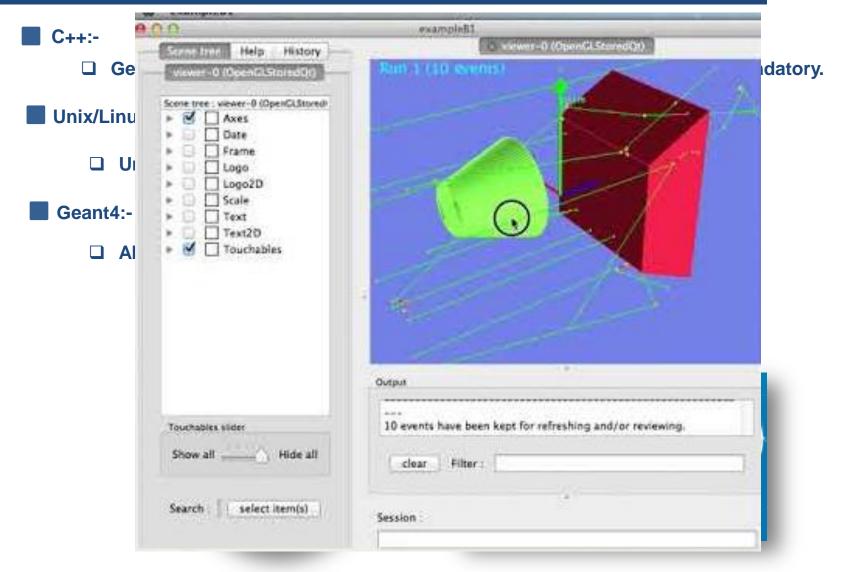


Aims & Objectives

Gain practical experience of using the Geant4 toolkit to solve typical problems of radiation protection.

Calculate flux-to-dose equivalent factor for different radiation type and spectrum.

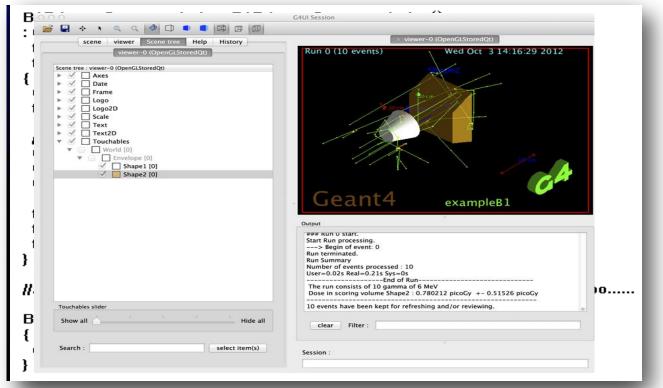
Calculate of basic dosimetry quantities useful for radiation protection applications.
 Simulate shielding and radiation protection efficiency.



We Calculate

Computer simulation of radiation protection

Computational Methodology & software



Results & Discussion

Geant4 program

Task I:- Geometry Modification and running the simulation using Geant4.

- □ Source ~/geant4/bin/geant4.sh
- □ Kate .. /src/B1PrimaryGeneratorAction.cc
- □ ./exampleB1
- /run/beamOn 10

Results & Discussion

Geant4 program

Task II:- Radiation Treatment Dose Distributions using Geant4.

1000 particles	SiC + 6 Mev e-	H2O + 20 Mev e-	SiC + 20 Mev e-	SiC + 100 Mev e-	SiC + 200 Mev protons	SiC + 20 Mev gamma
Dose (nanoGy)	Tone type Olever-0 (OpenGLStoredQ	0.848	0.853 tem	s0.862	0.202	0.192
RMS	(nanoGy)	0.647 (picoGy)	0.7 <mark>874</mark> (picoGy)	∞0.745 (picoGy)	0.377 (picoGy)	0.436 (picoGy
Incoming particles	t Touchables World (0) 1027 Envelope (0)	1014	1563	1393	1014	544
Outgoing Particles	2051	1732	9924	2215 ex	ampleB1 230	275
		In ca	se of electr	on only		
Incoming particles	28	User=0.0300005 Real=0.045318 ————————————————————————————————————	mey pring 0 0 5 Gulated dose per run, ou so g particles	coring vol n despicoGy rms = 31.4004	picoGy	
Outgoing Particles	78	"/vis/reviewKeptEvents" to revi		sccumulated.		

Results & Discussion

Geant4 program

10000 particles	SiC + 6 Mev e-	H2O + 20 Mev e-	SiC + 20 Mev e-	SiC + 100 Mev e-	SiC + 200 Mev protons	SiC + 20 Mev gamma	
Dose (nanoGy)	0.100	0.850	0.852	0.860	0.204	0.195	
RMS (picoGy)	0.40	0.20	0.23	0.22	0.17	0.14	
Incoming particles	5245	13822	13838	10204	17266	15597	
Outgoing particles	2716	21820	21843	99205	17266	20185	
In case of electron only							
Incoming particles	3559	13822	10009	10499			
Outgoing particles	647	21820	2284	741			

Results & Discussion

Geant4 program

Task III:- The effect of changing the length of Faraday cup in the percentage value using Geant4.

Faraday cup Length	20 mm	40 mm	60 mm	80 mm	100 mm
Incoming Particles	84	101	98	103	94
Outgoing Particles	76	36	30	29	26
Faraday cup efficiency	9.5 %	64%	69%	71%	72%

Conclusion

- Geant4 clearly provides powerful radiation tools underpinned with comprehensive physics simulation.
- The dose rate for a given radiation source and distance were calculated.
- Shielding and radiation protection efficiency were simulated using Geant4 software.
 - Geant4 will continue to be supported and activity developed for foreseeable future and we should look to take advantage of the new features.

Acknowledgment

Thanks for your