

Neutron activation analysis in life science

By

Mohamed Sobhi &

Enas Abdalhamid

Supervised by Prof. M.V Frontasyeva , Dr. Wael Badawy

Frank Laboratory of Neutron Physics

The Sector of Neutron Activation Analysis and Applied Research

- introduction
- Neutron Activation Analysis (NAA)
- Fundamentals of NAA
- Types of NAA
- Applications
- Advantages and limitations
- REGATA

- Experimental work
 - Sampling
 - Sample preparation
 - Irradiation of samples
 - Measurements of samples
 - Spectra processing
 - Calculation of concentration
- Joint projects with Egypt
- Gained experience
- Social program

History and discovery of NAA

➤The discovery of artificial radioactivity was forecast by Herbert George Wells (1914) to take place in 1933. Frederic and Irene Joliot- Curie almost obliged Wells: two weeks into 1934 they produced radioactive 30 Pby bombarding aluminum with alpha particles.

➢In Rome, the theoretician Enrico Fermi recognized that artificial radionuclides could be produced more efficiently with neutrons than alphas since neutrons striking a nucleus have no coulombic barrier too vercome. He was awarded Nobel Prize.

H. G. Wells (1866-1946)

Enrico Fermi (1901–1954)

Neutron Activation Analysis (NAA)

- NAA is a method for determination of elements based on conversion stable nuclei to other, mostly radioactive nuclei via nuclear reactions and measurements of reaction products [Bode, 1996]
- NAA was discovered in 1936 by G. Hevesy (Hungary) and H. Levi (Denmark)

Scanned at the American Institute of Physics

Types of NAA

• Destructive:

(radiochemical) – the resulting radioactive sample is chemically decomposed, and the elements are chemically separated.

 Non-destructive: (instrumental) – sample is kept intact and the radionuclides are determined, taking advantage of the differences in decay rates via measurements at different decay intervals.

INAA procedure is characterized by :

- Activation via irradiation with neutron source (in our case, it is the reactor IBR-2)
- Measurement of gamma radiation after one or more decay times
- Interpretation of the resulting gamma ray spectra in terms of radionuclides, associated elements and their concentration
- Multi-element analytical technique
- The chemical form and physical state of the elements are not influenced by the activation and decay process

Fundamentals of NAA

When a neutron interacts with the target nucleus via a nonelastic collision, a compound nucleus forms in an excited state. The excitation energy of the compound nucleus is due to the binding energy of the neutron with the nucleus. The compound nucleus will almost instantaneously de-excite into a more stable configuration through emission of one or more characteristic prompt gamma rays. In many cases, this new configuration yields a radioactive nucleus which also de-excites (or decays) by emission of one or

more characteristic delayed gamma rays, but at a much slower rate according to the unique half-life of the radioactive nucleus. Depending upon the particular radioactive species, half-lives can range from fractions of a second to several years.

The radioactive emission and radioactive decay paths for each element are well known and using this information, it is possible to study spectra of emissions of the radioactive sample, and determine the concentrations of the elements within it.

Applications

- Wide possibilities of applications
- Non destructive analysis
- Multi-element analysis
- Sensitivity to parts-per-billion for specific elements
- Customizable analysis

- Need for nuclear reactor
- Work with radioactive materials
- Time of analysis
- Sample preference

IBR – 2 Reactor in JINR

Parameters of IBR – 2:

- Average power 2 MW
- PuO2 fuel
- -Rotation rate, rev/min: main reflector 600 auxiliary reflector 300

- Neutron density flux $10^{16} \text{ n} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$

Neutron energy distribution

- Thermal 0.025 eV 0.5 eV
- Epithermal 0.5 eV 100 keV
- Fast 0.1 MeV 25 MeV

2000

Radioanalytical complex REGATA

Ch1-Ch4 –irradiation channels, S- intermediate storage, DCV- directional control valves, L- loading unit, RCB- radiochemical glove-cell, U- unloading unit, SU- separate unit, SM- storage magazine, R- repacking unit, D- detector, CB- control board, R1-R3- the rooms where the system is located.

Instrumental neutron activation analysis

Instrumental neutron activation analysis (INAA) is used to determine the concentration of trace and major elements in a variety of matrices. A sample is subjected to a neutron flux and radioactive nuclides are produced. As these radioactive nuclides decay, they emit gamma rays whose energies are characteristic for each nuclide.

Elements Obtained By NAA

How Powerful is this Analytical

Absolute detection limit, g

12/25/2019

Measurement of content of samples

Sample Collection

Annual Segments

Moss collection

Sediments ------

Soil

Sample Information programs

Client samela ID	Course been	Country-Client-Year ZA 09 1	Set ID-Set index Sample ID 7 13 m 31	D			
Client sample ID	Sample type	Sample preparation	Determined elements		Sepa	rate elements	1990 T-
Latitude Longitude Colle Nigeria Cupboard Box No	ction place Received by	 cleaning dying evaporation freeze(dying) homogenizing pelletization fragmentation 	all elements Select all Group of elements halogens heavy metals short-lived long-lived	Na Ng A S S S S C K C a S C K C S C K S S C	V Cu Zn Ga Ga Sa Sa Sa Sa Sa Sa Sa Sa Sa S	S Sb L Cs Ba La Ce P Nd Sm	V H H Ta W Re S Ir Pt Au
SOS 41T		Save sample	Close	V V V Cr V Mn V Fe V Co V Ni	Nb Mo Ru Pd Z Cd	V Eu V Gd V Tb V Dy V Ho V Er	V Hg V Th V U

					Country-Cli ZA	ent-Year-Set ID-Set i 09 17 13 m	ndex					
Sample ID	Client sample ID	Cleaning	Drying	Evaporation	Freeze drying	Homogenizing	Pelletization	Fragmentation	Weight SLI, g	Weight LLI, g	Sample preparation date	Maked
01	1		V						0,1039	0,1083	13.02.2017	Yushin N.S
02	2		V						0,0956	0,1082	13.02.2017	Yushin N.S
03	3		V					m	0,0967	0,0961	13.02.2017	Yushin N.S
04	4		V						0,1043 0,1162		13.02.2017	Yushin N.S
05	5		V						0,1042 0,1033		13.02.2017	Yushin N.S
06	6		V					(m)	0,1045	0,0993	13.02.2017	Yushin N.S
07	7		V						0,1011	0,1046	13.02.2017	Yushin N.S
08	8		V						0,0916	0,0964	13.02.2017	Yushin N.S
		1										+
eck selecte 'Cleaning'	ed Che	eck selected 'Drying'	Che	ck selected vaporation'	Check selected 'Freeze Drying'	Check selected 'Homogenizing'	Check sele 'Pelletizat	cted Check	k selected	Fill in we	eights from file Ch	eck selected 'Maked by'

Samples in N/	A DB: 11539) iple sets		english	Фильтр	ация спис	жа партий		SLI irradiation	n logs	LLI irradiation logs	I irradiation logs 7.01.2017		
Country	Client	Year	Samle set ID	Samle	Выбери	те поле пьтра	Choose filter	type of	20.01.2017 23.01.2017 25.01.2017		20.01.2017 23.01.2017 08.02.2017			
Code	05	47	ac	index	Показа	гь все 🝷		•	26.01.2017 09.02.2017	11.02.2017 15.02.2017				
RS	05	17	26	2	Muchon		เกิดวิมมิดข้า	DODTIN	10.02.2017	13.03.2017 16.03.2017				
RU	33	17	1/ 2/ a			Moldova	ыоранной	партии	17.03.2017		20.03.2017			
GR	01	17	28	b					06.04.2017		04.04.2017			
FR	01	17	29	c	Организация: Institute of Microbiology and				10.04.2017		10.04.2017			
PL	08	17	30	d	Biotechr	Biotechnology					15.05.2017 19.05.2017			
MD		17			Фамили	я: Zinicov	scaia		17.05.2017 18.05.2017	22.05.2017 23.05.2017				
New sample	set	Viewing se		Select sample s	еt Кол-во	образцов	: 18		19.05.2017					
	Color		Descrip	tion		33110B. VA	detation							
		sam	ple set acce	epted	This cop	u3400. V0	gotution							
sample preparation carried out			Дата Ю	КИ: 17.05	.2017,		Current up to	L	-					
irradiation SLI ==		Дата Д	КИ: 19.05	.2017,		Culterit year		_						
	irradiation LLI SLI or LLI plus results		- Oopaoo	Обработчик.				Select SLI irradiation log		Select LLI irradiation log				
			Результ	аты:			14.06.2017		14.06.2017	14.06.2017				
		SLI	and LLI plus	s results						radiation log	New LLI irradiation lo			
		Sho	wall		-									
		SRM sets					T			Monitor sets		_		
Name	Nur	ber	Туре	Weight, g	date	Ô	Name	Number	Туре	Weight, g	Purchasing date	1		
Si	01	me	tal	0,02	01.11.2016		Zr	05	foil	15,89	19.01.2010			
SI1	01	soi		10	21.12.2012		Zr	06	foil	15,89	19.01.2010			
Tc	01	me	tal	1	23.03.2015		Zr	07	foil	14,76	19.01.2010			
W	01	me	tal	5	23.03.2015		Zr	08	foil	14,76	19.01.2010			
LI log:		1	New SRM s	et acceptance		LLI log:		New m	onitor set accep	tance		Ĩ		
9.12.2015			Select	SBM set		07.04.2017	, i	0	elect monitor se					
	80		Juga			10.04.2017		3	short monarol 30	55				

Sample preparation:

- Samples air-dried and cleaned from roots of plants and wastes
- 3 g of the sample were weight and homogenized by an agate ball mill in pellets

International participations Stage 4

Sample Packing:

- The weight of the sample was then calculated and recorded by a weight software tool.
- Moss samples wrapped in polyethylene bag and aluminum pan for short- and long-lived irradiations respectively.

- Samples placed in transport capsules

- Short-lived isotopes - samples irradiated for 60

- Long-lived isotopes – samples irradiated for 3

Irradiation of Samples

- By using the pneumatic system the sample is sent to the reactor to be irradiated
- The short lived sample is irradiated for 60 s for soil and sediments. Whereas, moss for 180 s. the measurement is nearly 15 mins.
- The long-lived irradiation is 3 days and 3-4 days for decay and measured for 90 mins.

The practical stages of Irradiation in REGATA

Detection of gamma ray

• By using the HPGe detector we can get the gamma spectrum of the sample

Analysis of gamma spectrum

➢ GENIE 2000

- the program allows minimizing human involvement in routine long-term measurements of the spectra of the induced activity

- simultaneous measurements are conducted

By using this program we can evaluate the activity of each element in the sample

Then we can determine the concentration of each element by using the con. Calculation program

Calculation of concentration 6.13.0 -	×								
Calculation of standards activities Concentration Filters Nuclids table Re-launch application Russian									
Recalculation of standards activities		🖳 Редактор ГРС: С:\GEN	IE2K\CAMFILES\Spectra_NAA	\Spectra_Egypt\2019\EG-01-	18-26-z_30 soil_Yasmin\SLI\S	SRM			>
Base file of standar.s monitor activity: not choosen		File managment	Editing		Checks and cre	ation	Information		
File of standar.s monitor activity: not choosen		Save group sta	indard	Invert selected row	Create GRS	S automatically	File Created D	escription Code T	pye Geometry
File(s) of standar.s activity: not choosen		Choose rpt fi	iles		Chec	ck GRS	1005459 07.03.2019 Ve	ergel K s-1633c-0 S	_1-2 20
		Load GRS	3	Delete line	Ca	ancel	1005466 07.03.2019 N	ekhoros s-667-01-01 S	_l-2 20
Recalculate and save standards activities							1005467 07.03.2019 N	khoros s-2710-01 S	-1-2 20
		Standart name	Nuclide name	Nuclide ID confidence	Wt mean activity, uCi/gram	Uncertainty, %	Passport concentration, mg/kg	Passport uncertainty, %	Mean-square error, %
		2710	NA-24	0.995	5.31E+03	4	94 1.14E+04	5.30	7.24
Open GRS editor		1633c	NA-24	0.975	6.37E+02	5.	91 1.71E+03	3.50	6.87
		1547	NA 24	0.991	1.44E+01		10 2.40E+01	8.30	16.36
Concentration		1547	MG-27	0.995	1.30E+01 1.16E+02	2	92 4.32E+03 36 4.98E+03	1.90	3.48
File(s) of observable samplis activity: not choosen		2710	MG-27	0.993	9.00E+01	5	75 8.53E+03	4.90	7.55
		2710	AL-28	0.876	1.20E+04	2	43 6.44E+04	1.20	2.71
File of group standard, not choosen		1633c	AL-28	0.815	1.95E+0 4	2	41 1.33E+05	4 .60	5.19
The of group standard, hot choosen		15 47	AL-28	0.945	4 .22E+01	2	58 2.49E+02	3.20	4.11
Base file of standar.s monitor activity: not choosen		1547	CL-38	0.941	1.92E+01	5.	04 3.60E+02	5.30	7.31
File of sampl.s monitor activity: not choosen		1047	K-42 K-42	0.991	7.22E+02	0. 17	51 2.43E+04	3.70	5.74 <u>17.00</u>
	10	1547	CA-49	0.992	1.34E+01	7	46 1.56E+04	1.30	7.57
Coefficient of neutrons now changing	1.0	1633c	CA-49	0.992	1.10E+01	9	37 1.37E+04	2.90	9.81
SLI source Systematic error, %:	0	2710	CA-49	0.97 4	1.30E+01	40	01 1.25E+04	2.40	10.29
		1633c	TI-51	0.982	2.30E+01	3.	53 7.24E+03	4.10	5.41
Calculate and save concentrations		2/10	++ 51 V 52	0.984	1.03E+01	14.	36 2.83E+03	3.50	14.78 2.06
Files of element a concentration of observable samples: not observe		2710	V-52 ₩.52	0.92	4.61E+02	4	25 7.66E+01	3.00	5.90
These of cleaner it is concentration of observable samples, not choosen		1547	V 52	0.988	5.00E-01	42	20 3.70E 01	8.10	14.64
		2710	MN-56	0.989	5.69E+04	3.	81 1.01E+04	4.00	5.52
Rounding accuracy %:	1	1633c	MN-56	0.967	1.05E+03	4.	27 2.40E+02	1.40	4 .50
Show concentrations values	_								
Create intermediate table of concentration	_								
Elements without calculated concentration									
Create final table concentration									

Joint projects with Egypt

Projects:

Ist Phase
Assessment of the environmental situation in the basin of the River Nile using nuclear and related
2011-2014).
2 nd Phase
Environmental studies in Egypt using neutron activation analysis and other analytical techniques (2015-
2018).
3 rd Phase
Assessment of the environmental situation in the marine ecosystems in Egypt using neutron activation
analysis and other analytical techniques (2018-2020).
1 th Phase
An announcement of new proposals are ready posted on the site of ASRT- Egypt

Social program

12/25/2019

International participations Stage 4

Thank you for your attention

