

Crystal and magnetic structure of advanced metal oxides: neutron diffraction studies.

Presented by:

- Mohamed Sami MSc Student, Institute of Graduate Studies and Research
- Mostafa M. Elkady MSc Student, South Valley University
- Sanaa Ismail BSc Graduate Student, Suez University

Project Supervisors:

- Nadezhda Belozerova Junior Researcher, Condensed Matter
 Department, Frank Laboratory of Neutron Physics, JINR
- Dr. Sergey Kichanov Leader Researcher, Condensed Matter
 Department, Frank Laboratory of Neutron Physics, JINR

Discovery of neutrons.

Fast pulsed reactor IBR-2.

Neutron diffraction and it's advantages.

Neutron Vs. X-ray diffraction.

Presentation Outline

Relation between temperature and bond angle.

Temperature dependences of the magnetic moments of the atoms inside the spinel ferrite structure.

What are neutrons?

- Neutrons are subatomic particle with no net electric charge.
- Free neutrons are unstable; they under β decay, lifetime ~ 885.6 ± 0.8 sec.
- They can't be stored for long free;

$$n \rightarrow p^+ + e^- + \overline{\nu}_e$$

- It has Particle wave.
- Mass, Spin 1/2, Magnetic dipole moment.
- Neutrons interact with the nucleus.

schematic illustration for the neutron

Neutron sources

- Small-scale neutron sources.
- Fission reaction.
- •Neutron sources based on accelerators:
 - I. Synthesis reaction
 - II. Photonuclear reaction
 - **III.Spallation reaction**

Fast pulsed reactor IBR-2

Neutron Deacceleration

NEUTRON ENERGY [eV]

Neutron spectrometer

Neutron diffraction

 $2d_{hkl}sin\theta_0 = \lambda$

Time of fly method

Neutron Vs. X-ray diffraction

Neutron diffraction	X-ray diffraction
Lower absorption	Stronger absorption
Large amounts of sample needed	Lower amounts of sample needed
Neighbors and isotopes can be discriminated	Neighbors and isotopes cannot be discriminated
Light elements can be seen	Light elements hard to detect
Low availability (nuclear reactor)	High availability (lab instrument)
Magnetic structures can be investigated	
Magnetic structures can be Investigated	

Example; Neutron Vs. XRD pattern

Zn_{0.3}Cu_{0.7}Fe_{1.5}Ga_{0.5}O₄ spinel ferrites

Application fields

Ferrimagnetic structure

Cubic structure

Scientific software for data refinement

• Determine Lattice parameters, position of the atoms inside the unit cell, and the value of the magnetic dipole moment of those atoms.

Diamond Software • a schematic illustration for the unit cell using the obtained parameter from FullProf software and calculating the angles and distances between atoms

OriginLab

• Drawing the relation between obtained parameter and the temperature of the samples

16

<u>File Plot Options Points Selection X space Calculations Rietveld plot options Text External applications Tools Help</u>

a graphic tool for powder diffraction

[Version: April 2019]

12-24-2019	13:42		

Save background selected points

<

v

>

CuZn_48C - Notepad	- 🗆 🗙	☐ CuZn_48C - Notepad - □ ×	
<u>F</u> ile <u>E</u> dit F <u>o</u> rmat <u>V</u> iew <u>H</u> elp		<u>F</u> ile <u>E</u> dit F <u>o</u> rmat <u>V</u> iew <u>H</u> elp	
Fe304 ! !Nat Dis Ang Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth ATZ Nvk Npr 6 0 0 1.0 0.0 0.0 1 0 -1 0 0 2404.580 0 7 !	More 0	<pre>^ COMM LPCM-70 , T= 48C ! Current global Chi2 (Bragg contrib.) = 0.1212E+05 ! Files => DAT-file: cuzn_48c.dat, PCR-file: cuzn_48c !Job Npr Nph Nba Nex Nsc Nor Dum Iwg Ilo Ias Res Ste Nre Cry Uni Cor Opt Aut -1 9 3 65 2 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1</pre>	^
1		1	
<pre>F -1 <space !nsym="" 1="" 1<="" cen="" for="" generation="" group="" hkl="" laue="" magmat="" pre="" symbol=""></space></pre>		!Ipr Ppl Ioc Mat Pcr Ls1 Ls2 Ls3 NLI Prf Ins Rpa Sym Hkl Fou Sho Ana 1 0 1 1 0 0 1 1 0 1 1 4 0 3 10 1 1 0 0 1 ! <t< td=""><td></td></t<>	
		! Bkpos Wdt Iabscor for Pattern# 1	
SYMM x,y,z MSYM u,v,w,0.0 !		15000.000 3.20 1 !NCY Eps R_at R_an R_pr R_gl TOF-min <step> TOF-max 200 0.10 0.20 0.20 0.20 6656.0000 64.0782 59072.0000</step>	
!Atom Typ Mag Vek X Y Z Biso Occ Rx	Ry Rz		
! Ix Iy Iz beta11 beta22 beta33 MagPh FeT1 MFE3 1 0 0.12500 0.12500 0.12500 0.90514 2.36250 3.877	0.000 0.00	Image: CuZn_48C - Notepad — □ Eile Edit Format View	>
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.0	! Data for PHASE number: 1 ==> Current R_Bragg for Pattern# 1: 11.2005 !	
FeT1 MFE3 1 0 0.87500 0.87500 0.87500 0.90514 2.36250 3.877 0.00	0.000 0.00 0.00 0.0	LPCM-75 (30% 0-18); DN-6 ! !Nat Dis Ang Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth ATZ Nvk Npr More 7 0 00.00.01.0 0 0 0 0 0 50134.535 0 9 0	
FeO1 MFE3 1 0 0.50000 0.50000 0.50000 0.50000 0.90514 3.37500 1.400 0.00 0.00 0.00 0.00 0.00 21.00	0.000 0.00 0.00 0.0	! ! E.d3.m	
0.000 0.000 0.000 0.000 0.000 0.000 0.0000		Atom Typ X Y Z Biso Occ In Fin N t Spc /Codes	
FeO2 MFE3 1 0 0.25000 0.75000 0.000 0.90514 3.37500 1.400 0.00 0.00 0.00 0.00 0.00 21.00	0.000 0.00 0.00 0.0	Zn ZN 0.12500 0.12500 0.12500 1.94223 0.11250 0 0 0 0 0.00 0.00 0.00 0.00 0.00 0.00	
0.000 0.000 0.000 0.000 0.000 0.000 0.00000		GaA Ga 0.12500 0.12500 0.12500 1.94223 0.00000 0 0 0 0	
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.000 0.00 0.00 0.0	FeA FE 0.12500 0.12500 0.12500 1.94223 0.26250 0 0 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0	
0.000 0.000 0.000 0.000 0.000 0.000 0.00000		Cu CU 0.50000 0.50000 0.50000 -1.41956 0.26250 0 0 0 0	
0.00 0.00 0.00 0.00 0.00 0.00 0.00 FeO4 MFE3 1 0 0.00000 0.25000 0.75000 0.90514 3.37500 1.400	0.000 0.00	FeB FE 0.50000 0.50000 0.50000 -1.41956 0.37500 0	
0.00 0.00 0.00 0.00 0.00 0.00 0.00 21.00 0.000 0.000 0.000 0.000 0.000 0.0000	0.00 0.0	GaB GA 0.50000 0.50000 0.50000 -1.41956 0.18750 0 0 0 0 0.00 0.00 0.00 0.00 0.00 18	
<	>	0 0 0.25888 0.25888 0.25888 1.93015 1.50000 0 0 0	

Our first try of data fitting

Intensity (arb. units)

Better data fitting

Neutron diffraction patterns for Zn_{0.3}Cu_{0.7}Fe_{1.5}Ga_{0.5}O₄ measured at different temperatures.

21

File Edit View Structure Picture Build Objects Move Tools Window Help || 🗅 🚅 🖬 🛍 🚭 | 🌡 🖻 💼 | い つ | 😢 | 🆿 🐩 🔊 🕾 | 洗 粘 粘 | 🗶 | 金 も も も

😸 Diamond 1

Title	Code	Formula sum	HM symbol	SGR no.	Cell paramete	ers							
Title Code Formula sum HM symbol Diamond1 Pictures No structure data sets defined for Dial (You can create a data set and type in structure data with or insert structures from a file with "Structure/In				SGR no.	Cell parameter ucture mic parameter The atomic parar orthogonal coord you can define e nixed or defect s nic Parameters" Atom:	ers ers neters use fraction linates (in Angstro element (with oxion ites, standard un dialog ("Structure <u>x</u> /a: 0.2588	nal coordinates fo oem units) for a 'n dation number) as certainties, and d "menu) instead. y/b: 0.2588	or a crystal structure molecular structure well as x, y, and z isplacement parame z/c: 0.2588	e but for every atom. ters, use the		2		
					Atom FeA FeB O	mmetric unit: x 0.125 0.5 0.2588	у 0.125 0.5 0.2588 < <u>В</u>	z 0.125 0.5 0.2588 ack <u>N</u> ext >	<u>D</u> elete				
🔡 Tiles 🚪	Details												\sim
1 A 12 +0 3		· O O 🗐 🌢 😫	t - "Fe 🕀 - M -	• •	⊪ / & Ø	6 4 0	$\Phi X < 2$	ை இட இட				22	

| 🗅 😂 🖬 🛱 🚭 | 芯 🖻 🛍 | い つ | 😢 | 🖿 🛸 🔊 🖳 🐃 | 洗 汚 汚 🐁 (な)

😼 Diamond1

Title C	ode	Formula sum	HM symbol	SGR no.	Cell parameters		Τ			
Pictures (You of a second seco	an (w Structure Cell parameters, spa The new structure n a "molecular structure Choose if the new structure Choose if the new structure Space-group: Cell length a [Å] Cell angle alpha O "Molecular structure Title of the new structure	ce-group, and title nay be a crystal structure re" with atoms only. ure is a crystal structure cuitar structure" (just atom with cell and space-grout F d -3 m (227) 8.03227 [9]: 90 be ure", no cell, no space-grout e: Structure 1	e (with cell and (translational ns in orthogor p b: 8.03227 ta: 90 roup < Back	I space-group) or just symmetry and fractional atra al coordinates). Browse C: 8.03227 gamma: 90 Next > Canc	om 2	X	Space-group Hermann-Mauguin symbol: F d-3 m (22701) □ F d-3 c (228) □ F d-3 n (227) □ F d-3 n (227) □ F d-3 m (227) □ F d-3 m (227) □ F D3MS (227) □ F D 3MS (227) □ F D 3MS (227) □ F d d 2 (43) □ X, Y, Z [2] + y, 0.25+x, 0.25+z [3] 0.25-x, 0.25-y, z		×
∧ 🗱 🕶 🍰 🖾	* •	· O O 🗐 🌢 🕫	🛤 🔹 🦣 🖶 📼 M	- 💽 -	■ A & @ \ 4	00	X <	〔会 涼 角 角	23	

For Help, press F1

_ 8 ×

😼 Eile Edit View Structure Picture Build Objects Move Tools Window Help

|| D 😅 🖬 🗛 🝳 🎒 | X 🗈 🛍 | 🗸 🖓 🗽 🕺 🛸 🤹 🌾 🌾

Diamond3.diamdoc > temp 90 > Picture 1

			E	🛛 Data sh	eet 🛆 🛛	Distances/	angles	IIII PO	wder p	attern	4	>
Data brief 💂											×	:
	Cor	aral		_								J
	Ger	ierai									r	1
Bi	bliogra	phic d	lata									
~	Phase	e data	()	1.1								
Space-gro	a=	1 - 3 m 8.0332	(227) - X	cubic								
Cell	V=	518.40	λ ³									
		A	tomic p	aramete	ers							
Atom Ox.	Wyck.	Site	S.O.F.	x/a	y/b	z/c	U [Ų]					
Fe2	0a 16d	-45m		1/0	1/0	1/0						
01	32e	.3m		0.26127	0.26127	0.26127						
											~	1
Proportion											~	,
topercies	+											- 1
structure pic	cure cor	itents									~	
											_	ł.
Atomic param	neters									3		
Symmetry red	cords									48		
toms in unit	: cell									56		1
Explicitely def	fined bo	nds								0		
created atom	ns									191		
reated bond	15									362		
ell corners										8		,
ei ennes										17		

●Fe ●0 _ 8 ×

Relation between temperature and unit cell volume.

Relation between temperature and bond Angle

Relation between temperature and bond length

Temperature dependences of the magnetic moments of the atoms inside the spinel ferrite structure.

Thanks!