

Joint Institute for Nuclear Research

SCIENCE BRINGS NATIONS

TOGETHER

Spectroscopy of alpha and gamma

particles using solid-state detectors

Presented by

Miss M. Ntobeng (UNISA, RSA)

&

Mr P. Chikamhi (VUT, RSA)

Supervisor: A. Shahov (Flerov, JINR)

Alpha and Gamma Particles

- Gamma radiation or simply gamma ray, is electromagnetic radiation of very short wavelength, high energy frequency and no electric charge.
- Typical gamma ray frequencies, energies and wavelengths are around 10 exahertz Hz, 100 keV and10 pico-meters, respectively.
- Gamma rays frequently accompany alpha and beta radiation emissions
- Alpha particles have positive charge, two protons and two neutrons (helium -4 nucleus), commonly produced during alpha decay of radioactive isotopes
- Alpha particles are relatively heavy and slow moving, compared to γ -rays
- Scintillation and solid-state detectors are efficient in extraction of details required for energy measurements in γ -ray spectroscopy

Solid-state detectors: γ-rays

Detectors register energy spectra of radiation incident on their sensitive volume, where signal outputs are proportional to energy of the radiation High purity Germanium (HPGe) detectors

- Best solution for precise γ and X-ray spectroscopy
- More efficient than silicon detectors due to higher atomic number and lesser energy required to create an electron-hole pair (2.9 vs 3.6 eV)
- Highest resolution commonly available.
- Requires thermal cooling (N2 @ -196°C) to prevent thermal excitation (generation of charge carriers) due to low band-gap energy (0.67 eV)

Solid-state detectors: α-particles

Si diode detectors

- Alpha spectroscopy is used to identify/qualify radionuclides based on α -particles emitted in the decay process.
- PIN-type Si diodes operating in reverse direction are used as counters
- Requires vacuum to prevent energy losses due to interaction with air molecules, resulting in degradation of *energy resolution* of the detector

Ge(Li) y-rays detector

Figure 1: (a) Ge(Li) detector (a)workstation utilising GammaMCA software for real-time and offline viewing of γ-ray energy spectra and (b) γ radiation calibration sources

Si detector *a*-particle Spectrometry

CIENCE BRINGS NATIONS

- FASTER-ADC module contains all modules shown in **Figure 2(b)**
- FASTER software for real-time/online viewing of α-particle energy spectra
- CERN Root is used for offline processing of α -particle energy spectra data

Figure 2: Si detector (a)workstation utilising FASTER hardware (ADC module) and software and oscilloscope, (b)essential hardware modules for electronic signal processing and (c)schematic of detector vacuum pump.

Calibration of the Ge(Li) γ -rays detector

Figure 3: (a)GammaMCA program and (b)calibration line in Origin, where E is energy (keV), D is channels.

Energy resolution of solid-state detectors

• Energy resolution relates to ability of a detection system to distinguish between two adjacent energy peaks, specified in terms of full width at half maximum height (FWHM) of the energy spectrum.

Figure 4: Energy resolution determination ((a), (b) graphical and analytical methods)

Energy efficiency of γ-rays detectors

• Efficiency of a γ -ray detector relates to its ability to accurately detect and measure gamma radiation. Efficiency is defined as the ratio of detected γ -rays to total γ -rays emitted by source and determined by:

 $\varepsilon(E_i) = \frac{N}{A_0^{tk}qtmK_c}$

q – Gamma-photon output per one act of beta decay

t - Time of measurement

- m Mass of the source
- N Number of counts in the spectrum over time t
- Kc Coefficient of radiation self-absorption
- A_0^{tk} Attestation value of specific activity of source at time of measurement

 $A_0^{tk} = A_0 e^{-0.693(t_0 - t_k)/t_{1/2}}$

 A_0 - Specific activity at the time of certification ($t_0 - t_k$) - Time period from certification to the measurement $t_{1/2}$ - Half life

 $l_{1/2}$ - Hall III

Figure 4: Variation of efficiency with energy

Energy spectrum of Eu-152 as registered by a Ge(Li) detector

Figure 5: 152-Eu energy spectrum registered by a Ge(Li) detector showing energy in keV

Other solid-state γ -rays detectors

Cadmium Zinc Telluride (CdZnTe or CZT) detector

- Used in X-ray and γ -ray detection systems, laser optical modulation, high-performance solar cells
- CZT detectors have inferior energy resolution and efficiency, compared to Ge(Li) γ -ray detectors

(a)

(b)

Figure 5: Zinc Cadimium Telluride (CTZ) (a)wafer, (b)compact detector for γ-rays detection

Energy resolution of different solid-state detectors

Figure 6: Comparison of energy resolution of a Ge(Li) detector to that of a CZT detector using Co-60 source

Unknown radioactive source identification by γ -ray spectrum

Figure 7: Spectrum of an unknown isotope and γ -ray radiation source.

Solid-state γ-ray detectors - Data Tables

Cont

z	²¹⁰ Ra	²¹¹ Ra	²¹² Ra	²¹³ Ra	²¹⁴ Ra	²¹⁵ Ra	²¹⁶ Ra	²¹⁷ Ra	²¹⁸ Ra	²¹⁹ Ra	²²⁰ Ra	²²¹ Ra	²²² Ra	²²³ Ra	²²⁴ Ra	²²⁵ Ra	²²⁶ Ra
	²⁰⁹ Fr	²¹⁰ Fr	²¹¹ Fr	²¹² Fr	²¹³ Fr	²¹⁴ Fr	²¹⁵ Fr	²¹⁶ Fr	²¹⁷ Fr	²¹⁸ Fr	²¹⁹ Fr	²²⁰ Fr	²²¹ Fr	²²² Fr	²²³ Fr	²²⁴ Fr	²²⁵ Fr
86	²⁰⁸ Rn	²⁰⁹ Rn	²¹⁰ Rn	²¹¹ Rn	²¹² Rn	²¹³ Rn	²¹⁴ Rn	²¹⁵ Rn	²¹⁶ Rn	²¹⁷ Rn	²¹⁸ Rn	²¹⁹ Rn	²²⁰ Rn	²²¹ Rn	²²² Rn	²²³ Rn	²²⁴ Rn
	²⁰⁷ At	²⁰⁸ At	²⁰⁹ At	²¹⁰ At	²¹¹ At	²¹² At	²¹³ At	²¹⁴ At	²¹⁵ At	²¹⁶ At	²¹⁷ At	²¹⁸ At	²¹⁹ At	²²⁰ At	²²¹ At	²²² At	²²³ At
84	²⁰⁶ Po	²⁰⁷ Po	²⁰⁸ Po	²⁰⁹ Po	²¹⁰ Po	²¹¹ Po	²¹² Po	²¹³ Po	²¹⁴ Po	²¹⁵ Po	²¹⁶ Po	²¹⁷ Po	²¹⁸ Po	²¹⁹ Po	²²⁰ Po	²²¹ Po	²²² Po
	²⁰⁵ Bi	²⁰⁶ Bi	²⁰⁷ Bi	²⁰⁹ Bi	²⁰⁹ Bi	²¹⁰ Bi	²¹¹ Bi	²¹² Bi	²¹³ Bi	²¹⁴ Bi	²¹⁵ Bi	215 Bi	²¹⁷ Bi	²¹⁸ Bi	²¹⁹ Bi	²²⁰ Bi	²²¹ Bi
82	²⁰⁴ Pb	²⁰⁵ Pb	²⁰⁶ Pb	²⁰⁷ Pb	²⁰⁸ Pb	²⁰⁹ Pb	²¹⁰ Pb	²¹¹ Pb	²¹² Pb	²¹³ Pb	²¹⁴ Pb	²¹⁵ Pb	²¹⁶ Pb	²¹⁷ Pb	²¹⁸ Pb	²¹⁹ Pb	²²⁰ Pb
	²⁰³ TI	²⁰⁴ TI	²⁰⁵ TI	²⁰⁶ TI	²⁰⁷ TI	²⁰⁸ TI	²⁰⁹ TI	²¹⁰ TI	²¹¹ TI	²¹² TI	²¹³ TI	²¹⁴ TI	²¹⁵ TI	²¹⁶ TI	²¹⁷ TI		
80	²⁰² Hg	²⁰³ Hg	²⁰⁴ Hg	²⁰⁵ Hg	²⁰⁶ Hg	²⁰⁷ Hg	²⁰⁸ Hg	²⁰⁹ Hg	²¹⁰ Hg	²¹¹ Hg	²¹² Hg	²¹³ Hg	²¹⁴ Hg	²¹⁵ Hg	²¹⁶ Hg		
	122		124		126		128		130		132		134		136		N

- Ra-226, Pb-214 and Bi-214 isotopes were Ra-226 decay chain: ٠ identified (from chart of nuclides search).
- Using data from NuDat 3 website, decay ٠ chain of the unknown source was restored and the initial isotope defined as Ra-226

βα

Utilising α -spectroscopy to ascertain results obtained from γ-ray spectroscopy

Figure 8: Energy spectrum of emitted α-particles from the unknown source, in CERN Root

Cont ...

Figure 9: Identity and energy spectrum of the unknown isotope and radiation source

Example of α -spectroscopy application

• Measurement of target film thickness using the ionisation energy loss (Eloss) and material properties

Figure 10: Energy loss calculation/foil thickness using Lise++ software

THANK YOU

