

JOINT INSTITUTE FOR NUCLEAR RESEARCH IN DUBNA FRANK LABORATORY OF NEUTRON PHYSICS (FLNP)

Neutron activation analysis and Inductively coupled plasma-optical emission spectroscopy

By:

Ntsevu Anathi, Mehlwana Asavela

Supervisor: Prof. Inga Zinicovscaia Co-supervisor: Dr Nikita Yushin

Introduction

- Neutron Activation Analysis (NAA) and Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) are analytical techniques used for elemental determination in environmental and materials research.
- NAA excels in non-destructive trace metal analysis, particularly for environmental biomonitoring, while ICP-OES offers high-throughput element quantification, rare earth elements (REEs) in solutions.

Aims

- The aim of this study is to monitor and quantify metal accumulation in moss using Neutron Activation Analysis (NAA)
- Investigate and optimize the adsorption of rare earth elements (La and Ce) from aqueous solutions using titanosilicate ETS-10 as a sorbent, with ICP-OES employed to measure removal efficiency.

Neutron Activation Analysis

•Advantages

High sensitivity and precision
Accurate quantification
Multi-element analysis
Minimal sample preparation

Disadvantages
Longer analysis time
Radioactive waste safety concerns

Biomonitoring

Plant bio-monitors: lichens, moss, and higher plants

Pleurozium schreberi

Hypnum cupressiforme

Hylocomium splendens

Methodology: NAA sample preparation

Radioanalytical complex REGATA

CALIBRATION AND DATA PROCESSING

For calibration and data processing we used GENIE

🔍 Peak Locate Unidentified 2nd Diff. Setup																	
								100 C	and the second second		And the other designs of the						
Search Region	_		Line														
7207186 – Блокнот													-				
Файл Правка Формат Вид Справка ************************************	*****	*******	******	x													
***** GAMMA SPE	CTRUM ANA	ALYSIS	****	*													
***************************************		*******	**********	•			Na			Mg			Al				
Filename: C:\GENIE2K\CAMFILES\	client sample ID	latitude	longitude	files spectrum	processed by	Conc, µg/g	Err, %	MDC, µg/g	Conc, µg/g	Err, %	MDC, µg/g	Conc, µg/g	Err, %	MDC, µg/g			
Report Generated On	1	56.48640	37.35648	,7006162,5107869,1207174	Vergel K.N.	148	5	3.34	1160	8	88	733	5	12.5			
	2	00.48640	00.35648	,7006163,5107870,1207175	Vergel K.N.	120	5	3.34	1560	6	54	604	5	3.1			
Sample Title Sample Description	3	56.49516	36.97448	,7006164,5107871,1207176	Vergel K.N.	187	5	2.84	2050	6	91	1030	5	10.3			
Sample Identification	4	56.47955	36.62291	,7006165,5107872,1207177	Vergel K.N.	207	5	4	2620	7	152	1590	5	15			
Sample Type Sample Geometry	5	56.42233	36.36870	,7006166,5107873,1207178	Vergel K.N.	128	5	2.15	1920	6	Series 1 Point "	'Tula region''	5	5			
	6	56.31978	36.58859	,7006167,5107874,1207179	Vergel K.N.	152	5	3.64	2140	6	Value: 8.9	120	5	9.4			
Peak Locate Range (in channels Peak Acate Range (in channels) Peak Area Range (in channels) Identification Energy Toleranc Sample Size	7	56.17867	36.70945	,7006168,5107879,1207184	Vergel K.N.	136	5	3.1	1570	7	116	819	5	10.3			
	8	56.09420	36.93874	,7006169,5107880,1207185	Vergel K.N.	258	5	0.135	2060	6	84	943	5	9.4			
	9	56.27766	37.04482	,7006170,5107881,1207186	Vergel K.N.	195	5	0.14	2730	6	83	1480	5	8.8			
	10	56.35086	37.02940	,7006171,5107882,1207187	Vergel K.N.	100	5	2.6	2000	7	114	872	5	13.8			
Sample Taken On Acquisition Started	11	56.30688	37.17604	,7006172,5107883,1207188	Vergel K.N.	160	5	4	2450	6	83	1180	5	8.4			
	12	56.27251	37.27000	,7006173,5107884,1207189	Vergel K.N.	227	5	6.7	1220	7	49	428	5	4.3			
Live Time Roal Time	13	56.11076	37.21316	,7006174,5107836,5207174	Vergel K.N.	300	5	2.25	2970	6	106	1470	5	12			
Dead Time	14	56.02591	37.34071	,7006175,5107837,5207175	Vergel K.N.	269	5	2	2230	6	94	1130	5	9			
	15	55.91447	37.29930	,7006176,5107838,5207176	Vergel K.N.	178	5	1.26	1980	7	123	1560	5	31			
Energy Calibrati Efficiency Calib Efficiency ID	16	56.00069	37.02524	,7006177,5107839,5207177	Vergel K.N.	213	5	2.2	1640	8	232	690	5	26			
	17	55.98817	36.78065	,7006178,5107840,5207178	Vergel K.N.	256	5	2.05	1770	7	106	1100	5	16.6			
	18	55. 9 2567	36.49663	,7006179,5107841,5207179	Vergel K.N.	201	5	2.77	2440	6	66	1070	5	9.9			
▲Interference Corrected Activi	19	56.11272	36.43994	,7006180,5107846,5207184	Vergel K.N.	140	5	1.57	1550	7	88	521	5	12.5			
	20	56.29473	36.25623	,7006181,5107847,5207185	Vergel K.N.	112	5	2	1550	7	92	479	5	15.2			
****	21	56.20428	36.06174	,7006182,5107848,5207186	Vergel K.N.	96	5	2	1550	7	80	684	5	13			
***** NUCLIDE IDE ************************************	22	56.26700	35.85368	,7006183,5107849,5207187	Vergel K.N.	96	5	2.47	2200	6	38	555	5	4.8			
Sample Title: f-3 Nuclide Library Used: C:\	23	56.31548	35.73023	,7006184,5107850,5207188	Vergel K.N.	85	5	0.071	1340	6	38.6	449	5	3.8			
	24	56.43142	35.51060	,7006185,5107851,5207189	Vergel K.N.	99	5	1.8	1860	6	71	527	5	8.6			
TDE	25	56.27983	35.62173	,7006187,5107852,5207190	Vergel K.N.	116	5	1.77	549	8	36	167	5	5.2			
	26	56.18440	35.39246	,7006188,7107836,7207174	Vergel K.N.	138	5	1.24	2000	6	88	559	5	13.3			
Nuclide Id Energy Name Confidence (keV)	27	56.07407	35.64335	,7006189,7107837,7207175	Vergel K.N.	165	5	2.85	2040	6	72	619	5	7.8			
	28	56.10370	35.91751	,7006190,7107838,7207176	Vergel K.N.	182	5	2.73	1670	6	74	1340	5	9			
SL-46 0.999 889.25* CR-51 0.996 320.08*	29	56.02998	36.32241	,7006191,7107839,7207177	Vergel K.N.	98	5	1.73	1990	6	97	634	5	34			
CO-58 0.997 810.79*	30	56.05653	36.12456	,7006186,7107840,7207178	Vergel K.N.	135	5	1.73	1790	8	117	715	5	75			
	31	56.02789	35.81024	,7006192,7107841,7207179	Vergel K.N.	811	5	4.4	2070	6	88	1460	5	11.5			
	32	55.91761	36.05112	,7006193,7107846,7207184	Vergel K.N.	411	5	3.84	2860	6	85	2390	5	9.3			
	33	55.81934	35.79718	,7006194,7107847,7207185	Vergel K.N.	158	5	2.5	1940	6	91	868	5	12.6			

NAA applications

Food

Archeology

Nano-toxicity

Adsorption studies for wastes water treatment-METHODOLOGY

La and Ce

Optimization

Temperature

Concentration

Results Effect of pH, time and on La and Ce removal from wastewater

Effect of Temperature on La and Ce removal from wastewater

Results conti....The Effect of concentration on metals removal efficiency

Results conti...

Isotherms of La and Ce adsorption onto ETS-10

Conclusion

- Titanosilicate ETS-10 was used for the adsorption of La and Ce ions from aqueous solutions, showing a rapid adsorption process that was completed in no more than 7 minutes.
- The adsorption efficiency was strongly dependent on pH, with a maximum removal of 99% achieved at pH 3.0.
- Additionally, the adsorption process was found to be temperature-independent, maintaining a high removal rate of 94–99% across a temperature range of 20–50 °C.
- This indicates that ETS-10 is an effective sorbent for quick and efficient removal of La and Ce ions under mild conditions.

References

- Zinicovscaia, I., Yushin, N., Humelnicu, D., Grozdov, D., Ignat, M., & Humelnicu, I. (2023). Adsorption Capacity of Silica SBA-15 and Titanosilicate ETS-10 toward Indium Ions. *Materials*, *16*(8), 3201. <u>https://doi.org/10.3390/ma16083201</u>
- Zinicovscaia, I., Yushin, N., Humelnicu, D., Grozdov, D., Ignat, M., Demcak, S., & Humelnicu, I. (2021). Sorption of Ce(III) by Silica SBA-15 and Titanosilicate ETS-10 from Aqueous Solution. *Water*, *13*(22), 3263. <u>https://doi.org/10.3390/w13</u> 223263

Acknowledgements

science & technology

Department: Science and Technology **REPUBLIC OF SOUTH AFRICA** NELSON MANDELA

Change the World

National Research Foundation

Laboratory for Accelerator Based Sciences

Thank you!