МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение «Московский физико-технический институт (государственный университет)» МФТИ

		«УТВЕРЖДАЮ) >>
Проректор по уче	бной і	и методической работ	ге
		Д.А. Зубцо	B
«	>>	20	г.

Рабочая программа дисциплины (модуля)

по дисциплине: Теоретические и экспериментальные основы ядерной физики по направлению: 010900 «Прикладные математика и физика» .

профиль подготовки

магистерская программа: 010915 «Физика высоких энергий»

факультет: ФОПФ

кафедра: Фундаментальных и прикладных проблем физики микромира

курс: 4

квалификация: бакалавр

Семестр, формы промежуточной аттестации: 7 (Осенний) Экзамен

Аудиторных часов: 68 всего, в том числе:

лекции: 34 час.

практические (семинарские) занятия: 34 час.

лабораторные занятия: 0 час.

Самостоятельная работа: 34 час., в том числе:

задания, курсовые работы: 0 час.

Подготовка к экзамену: 30 час.

Всего часов: 132, всего зач. ед.: 4

Программу составил: к.ф.-м.н. Гуськов А.В.

Программа обсуждена на заседании кафедры

14 октября 2014 г.

СОГЛАСОВАНО:

Заведующий кафедрой Казаков Д.И.

Декан ФОПФ Трунин М.Р.

Начальник учебного управления Гарайшина И.Р.

1. Цели и задачи

Цель дисциплины

Специфика экспериментов в области физики высоких энергий, особенности измеряемых величин, объём и структура получаемой в экспериментах информации предъявляют определённые требования к методам обработки экспериментальных данных. В данном курсе рассматривается применение методов теории вероятности и математической статистики к наиболее типичным экспериментальным задачам, таким как поиск новых частиц в спектрах инвариантных масс и проверка статистической значимости слабых сигналов, кинематический анализ двух- и трёхчастичных распадов, фитирование полученных в эксперименте зависимостей произвольными функциями и оценка параметров этих функций методом наименьших квадратов и методом максимального правдоподобия. В ходе изучения обсуждаемых методов предлагается знакомство с пакетом ROOT, являющимся стандартным пакетом обработки данных в экспериментальной физике высоких энергий.

Задачи дисциплины

- формирование базовых знаний в области анализа экспериментальных данных в физике высоких энергий;
- обучение студентов современным методам обработки данных в экспериментальной физике высоких энергий и навыкам работы с программным пакетом ROOT.

2. Место дисциплины (модуля) в структуре образовательной программы бакалавриата

Дисциплина «Теоретические и экспериментальные основы ядерной физики» включает в себя разделы, которые могут быть отнесены к вариативной части профессионального цикла ООП Б.3.

Дисциплина «Теоретические и экспериментальные основы ядерной физики» базируется на материалах курсов, читаемых в рамках базовой и вариативной частей УЦ ООП Б.2 (теория вероятностей, Объектно-ориентированное программирование, Основы современной физики (общая физика)), и относится к профессиональному циклу.

3. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Освоение дисциплины «Теоретические и экспериментальные основы ядерной физики» направлено на формирование следующих общекультурных и профессиональных компетенций бакалавра:

а) общекультурные (ОК):

- владение культурой мышления, способностью к обобщению, анализу, восприятию информации, постановке целей и выбору путей её достижения (ОК-1);
- способность к саморазвитию, повышению квалификации, устранению пробелов в знаниях и самостоятельному обучению в контексте непрерывного образования, способность осваивать новую проблематику, язык, методологию и научные знания в избранной предметной области (ОК-6);

- способность к применению основных методов, способов и средств получения, хранения, переработки информации, к работе с компьютером как средством управления информацией (ОК-11);
- способность работать с информацией в глобальных компьютерных сетях

(OK-12);

б) профессиональные (ПК):

- способность формализовать и решать отдельные части нестандартной задачи в общей постановке (ПК-1);
- способность к пониманию важности воздействия внешних факторов, и их учёта в ходе исследований и разработок (ПК-2);
- способность применять основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования в физике, химии, экологии, других естественных и социально-экономических науках (ПК-3);
- способность к выявлению сущности задач, возникающих в ходе профессиональной деятельности, и привлечению соответствующего физико-математического аппарата для их решения (ПК-4);
- способность самостоятельно работать на компьютере на уровне квалифицированного пользователя, применять информационнокоммуникационные технологии для обработки, хранения, представления и передачи информации с использованием универсальных пакетов прикладных программ, знание общих подходов и методов по совершенствованию информационно-коммуникационных технологий (ПК-6);
- способность брать на себя ответственность за качество и результаты своей деятельности (ПК-10);

В результате освоения дисциплины «Теоретические и экспериментальные основы ядерной физики» обучающийся должен:

знать:

- особенности экспериментов в области физики высоких энергий и структуру получаемых в них данных
- методы теории вероятности и математической статистики, применяемые к наиболее типичным экспериментальным задачам
- методы поиска новых частиц в спектрах инвариантных масс
- способы проверки статистической значимости слабых сигналов
- методы кинематического анализа двух- и трёхчастичных распадов
- методы фитирование полученных в эксперименте зависимостей произвольными функциями и способы оценки параметров этих функций
- методы наименьших квадратов и максимального правдоподобия.

уметь:

 эффективно применять вышеуказанные знания на практике для решения фундаментальных и прикладных научных задач в области современной экспериментальной физики элементарных частиц.

владеть:

- техникой обработки данных с применением программного пакета ROOT.

4. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

4.1. Разделы дисциплины (модуля) и трудоемкости по видам учебных занятий

No.	T. (Виды учебных занятий, включая самостоятельную работу					
п/п	Тема (раздел) дисциплины	Лекции	Практич. (семинар.) задания.	Лаборат. работы	Задания, курсовые работы	Самост. работа.	
1	Экспериментальные данные в физике частиц	2	2	0	0	2	
2	Ошибки измерений	2	2	0	0	2	
3	Свойства случайных величин	2	2	0	0	2	
4	Кинематика СТО	2	2	0	0	2	
5	Основные типы экспериментов в физике частиц	2	2	0	0	2	
6	Двухчастичный распад	2	2	0	0	2	
7	Трёхчастичный распад	2	2	0	0	2	
8	Проверка статистических гипотез	2	2	0	0	2	
9	Статистическая значимость пиков	2	2	0	0	2	
10	Оценка параметров распределений	2	2	0	0	2	
11	Метод наименьших квадратов	2	2	0	0	2	
12	Разрешение экспериментальной установки и методы его оценки	2	2	0	0	2	
13	Критерии отбора событий	2	2	0	0	2	
14	Введение в пакет ROOT	2	2	0	0	2	
15	Фитирование гистограмм и графиков в ROOT	2	2	0	0	2	
16	Деревья ROOT	2	2	0	0	2	
17	Векторы и 4-векторы в ROOT	2	2	0	0	2	
Ито	го часов 34 34 0 0 34				34		
Обі	Общая трудоемкость 102 час.,4 зач.ед.						

4.2. Содержание дисциплины (модуля), структурированное по темам (разделам)

Семестр: 7 (Осенний)

1 Экспериментальные данные в физике частиц

Специфика экспериментальных данных в физике элементарных частиц. Типичные задачи по обработке данных, стоящие перед экспериментатором. Результаты измерения как случайные величины.

2 Ошибки измерений

Статистические и систематические ошибки измерений. Графические методы представления экспериментальных данных.

3 Свойства случайных величин

Случайная величина. Среднее значение и дисперсия.

Функции распределения случайной величины. Свойства основных функций распределения. Закон больших чисел. Центральная предельная теорема. Независимые случайные величины.

Корреляционная зависимость случайных величин.

4 Кинематика СТО

Кинематика СТО

Алгебра 4-векторов.

Двухчастичное рассеяние. Мандельштамовские переменные u,s,t

5 Основные типы экспериментов в физике частиц

Сечение реакции. Дифференциальное сечение.

Особенности экспериментов на встречных пучках и экспериментов на фиксированной мишени.

6 Двухчастичный распад

Кинематика двухчастичного распада. Диаграмма Арментероса-Подолянского.

7 Трёхчастичный распад

Кинематика трехчастичного распада. Диаграмма Далица.

8 Проверка статистических гипотез

Проверка статистических гипотез. Критерии χ 2, Колмогорова. Доверительный интервал.

9 Статистическая значимость пиков

Анализ соотношения "сигнал-фон"

Проблема поиска новых частиц в спектре инвариантных масс конечных состояний.

10 Оценка параметров распределений

Оценка параметров распределений и зависимостей. Метод максимального правдоподобия.

11 Метод наименьших квадратов

Метод наименьших квадратов. Программы-минимизаторы.

Оценка ошибок измерений по величине $\chi 2$

12 Разрешение экспериментальной установки и методы его оценки

Разрешение экспериментальной установки.

Методы оценки экспериментального разрешения по известным процессам.

Примеры оценки экспериментального разрешения.

13 Критерии отбора событий

Общие принципы нахождения критериев отбора сигнальных событий и подавления фона.

Понятие о методе Монте-Карло моделирования.

14 Введение в пакет ROOT

ROOT - объектно-ориентированная среда для обработки данных

Интерпретатор ROOT Гистограммы (TH1, TH2)

15 Фитирование гистограмм и графиков в ROOT

Графики (TGraph, TGraphErrors) Фитирование гистограмм и графиков.

16 Деревья ROOT

Функции (TF1, TF2) Деревья (TTree, TChain)

17 Векторы и 4-векторы в ROOT

Генераторы случайных чисел (TRandom).

Векторы и 4-векторы (TVector3, TLorentzVector) Использование классов ROOT в C++ программах.

5. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю)

Необходимое оборудование для лекций и практических занятий: компьютер и мультимедийное оборудование (проектор). Практические занятия проводятся в компьютерном классе.

Необходимое программное обеспечение: ROOT.

Обеспечение самостоятельной работы: доступ к программному обеспечению ROOT и базе данных Particle Data Group (http://pdg.lbl.gov).

6. Перечень основной и дополнительной литературы, необходимой для освоения дисциплины (модуля)

Основная литература:

- 1. Л. Д. Ландау, Е. М. Лифшиц, Теоретическая физика, Том 2, М. Наука, 1988
- 2. В. П. Чистяков, Курс теории вероятностей, М., Наука, 1978
- 3. Е. Бюклинг, К. Каянти, Кинематика элементарных частиц, М., Мир, 1975
- 4. Г.И.Копылов, Основы кинематики резонансов, М., Наука, 1970
- 5. Р. Бок, Х. Грот, Д. Ноц, М. Реглер, Методы анализа данных в физическом эксперименте., М., Мир, 1993
- 6. Идье В., Драйард Д., Джеймс Ф., Рус М., Садуле Б., Статистические методы в экспериментальной физике, М., Атомиздат, 1976
- **7.** ROOT User's Guide [http://root.cern.ch/drupal/content/users-guide]
- 7. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

-

8. Перечень ресурсов информационно-телекоммуникационной сети "Интернет", необходимых для освоения дисциплины (модуля)

<u>Информационные ресурсы:</u> Информационные ресурсы: Доступные через интернет страница разработчиков пакета ROOT (http://root.cern.ch) и база данных Particle Data Group (http://pdg.lbl.gov).

9. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень программного обеспечения и информационных справочных систем (при необходимости)

_

10. Методические указания для обучающихся по освоению дисциплины

_

11. Фонд оценочных средств для проведения промежуточной аттестации по итогам обучения

Перечень контрольных вопросов для сдачи экзамена в 7-ом семестре:

- 1) В чём заключается особенность экспериментальных данных в физике частиц?
- 2) Назовите наиболее часто встречающиеся в экспериментальной физике частиц статистические распределения. Каковы основные параметры этих распределений? Приведите примеры случайных величин, подчиняющихся этим законам распределения.
- 3) Каким образом осуществляется предельный переход от биномиального распределения к распределению Пуассона и нормальному распределению?
- 4) Возможно ли, зная одномерные функции распределения двух случайных величин, установить совместную функцию распределения этих величин? Если да, то в каких случаях?
- 5) Какие величины являются инвариантами преобразований Лоренца?
- 6) В чем заключается преимущество экспериментов со встречными пучками перед экспериментами с неподвижной мишенью? В чём заключаются недостатки?
- 7) Чему равно полное сечение резерфордовского рассеяния?
- 8) В чём заключается особенность двух- и трёхчастичных распадов?
- 9) Приведите примеры распадов, которые могут быть использованы для калибровки экспериментальной установки.
- 10) Сравните метод максимального правдоподобия и метод наименьших квадратов оценки параметров. В чём достоинства и недостатки каждого из методов?
- 11) Что такое псевдослучайные числа? В каких случаях вместо последовательности случайных чисел может быть использована последовательность псевдослучайных чисел?
- 12) Приведите примеры использования объектов ROOT классов TH1, TGraph, TGraphErrors для анализа экспериментальных данных? В каких случаях наиболее удобно применять каждый из перечисленных объектов?
- 13) Какие существуют способы записи и чтения объектов из дерева ROOT? В каких случаях разумно применять каждый из них? Что такое TChain?
- 14) Какие средства работы с векторами и 4-векторами предлагает ROOT? Как осуществляются операции преобразования векторов и 4-векторов?
- 15) Каким образом ROOT может взаимодействовать с другими стандартными приложениями, используемыми в физике частиц?